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Abstract

In this work, we investigate the problem of order batching and picker routing
in warehouse storage areas. These problems are known to be capital and labour
intensive, and often contribute to a sizable fraction of warehouse operating costs.
Here, we consider the case of online grocery shopping where orders may consist
of dozens of items.

We present the problem introduced in [1] and tackle the issue of solving the
problem heuristically with proposed methods of solving that utilize batching and
routing heuristics. Instances with up to 50 orders were solved heuristically in large
simulated warehouse instances consisting of 8 to 30 aisles, with 1 to 4 blocks.
The proposed methods were shown to have relatively short computation times as
compared to optimally solving the problem in [1]. In particular, we showed that a
proposed method which utilizes an optimal solver for routing yielded poorer results
than methods that utilize routing heuristics.

Keywords: integer programming, inventory management, order batching, order
picking, picker routing
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1
Introduction

1.1 The Business Problem

The project undertaken in this thesis investigates methods to optimize order picking

by batching several orders together and by planning a good route to minimize the

distance required to pick up all the items. The proposed methods scale up to typical

warehouse sizes and are implemented and experimentally tested on real data sets.

This project is in collaboration with an industry partner, Cosmiqo International Pte

Ltd1.

We thus answer the following two main questions in this thesis:

1. Across all order and warehouse instances, what is the quality of solution vs

time trade-off?
1See https://cosmiqo.com/
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2 CHAPTER 1. INTRODUCTION

2. If I have a warehouse with X aisles and Y cross-aisles and a number of

orders to batch, what method should be used to solve the problem within the

time limit?

1.2 Warehouse Operations

In a warehouse, reorganization and repackaging of products are performed. A

product typically arrives at the warehouse packaged in large quantities and leaves

packaged in smaller quantities. This also means that one of the important roles of

the warehouse is to receive large quantities of products and to redistribute them

in smaller quantities. Here, products can come from manufacturers in pallet-size

quantities, but get shipped out to customers in case/pack quantities.

Reorganization of products is carried out via the inbound (receiving, put-

away) and outbound (order-picking, checking, packing, shipping) processes in

sequence [3]:

• Receiving: Consists of unloading of products from transportation vehicles

from a manufacturer to receiving docks, inspection of products for damages

or for missing products, and updating existing warehouse inventory records

to reflect changes in stock.

• Put-Away: Involves the movement of products from receiving docks to their

allocated storage locations, a shipping dock, other locations in a warehouse,

and also the movement of products between these areas.

• Order-Picking: Defined as the process of retrieving products (from orders)

from storage blocks in a warehouse in response to specific customer re-
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quests [1, 4].

• Checking & Packing: Checking is a labor-intensive process that checks

whether each customer’s order is complete and accurate. Packing, which

comes shortly after checking, involves collating items in a customer’s order

for shipping. Packing is a complicated process as customers generally prefer

to receive all items in their order in a minimal number of packages, as this

minimizes shipping and handling costs.

• Shipping: Includes loading of products onto transportation vehicles, the

inspection of products to be shipped to customers, and also the updating of

warehouse inventory records.

The importance of determining an appropriate storage location is high as the

location of a product largely determines how quickly you retrieve it for a customer,

and also the cost of retrieving it at a later time. Thus, a second inventory of storage

locations must be managed on top of product inventories.

1.3 Order-Picking

Order picking is the most challenging of operations in most warehouses, as it is

the most labour intensive operation and it also determines the quality of service

experienced by customers on the ground. In particular, it typically accounts for as

much as 60% of all labor activities [5], and in general order-picking time broken

down as such [3]:



4 CHAPTER 1. INTRODUCTION

As traveling time has the greatest cost in order-picking, it is clear that majority

of the design of the order-picking process is targeted in minimizing travel time in

the warehouse. Any underperformance in the order-picking process may lead to

unsatisfactory service for the customer and high operational costs for the warehouse

itself, and ultimately the entire logistics network.

1.4 Preliminaries

In this section, we introduce some important assumptions and definitions with are

key to defining our project objectives and formulating the optimization problems

and heuristic algorithms.

1.4.1 The Warehouse

We first state the following definitions about the warehouse and key terms which

are widely used throughout the thesis:

Definition 1.4.1. The warehouse has a rectangular layout without unused space

and only has parallel aisles. It contains a single depot used to take the order and to

drop it off, and is also divided into blocks, which contains slots that store products,

and are separated by cross-aisles. Cross-aisles do not contain any products but

allow the picker to navigate in the warehouse.
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Figure 1.1: Warehouse structure [1] Figure 1.2: Our representation of the
warehouse as a graph

Remark. Note that the warehouse must have at least one cross-aisle at the top

and bottom, possibly containing more.

Definition 1.4.2. A subaisle is defined as a section of an aisle within a block.

Example 1.4.1. A typical warehouse layout can be found in Figure 1.1, where

there are 3 aisles, each aisle containing 2 subaisles.

Definition 1.4.3. An order picker or picker is a warehouse employee that is

tasked with order picking.

To collect products in the warehouse, the picker uses a picking device, which

vary across warehouses, but it usually comes in the form of a cart/trolley, or a

motorized vehicle with a certain storage capacity.

Without loss of generality, we make the following assumptions about warehouse

operations, which help simplify the explanation of the problems at hand:

Assumption 1. All aisles have equal lengths. All cross-aisles have equal lengths.

Assumption 2. Aisles contain slots on both sides, which can be stacked vertically

in shelves and only one type of product is present in each slot.
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Assumption 3. Pickers move along the center of the aisle.

Assumption 4. Products on both sides of the aisle are within reach of the picker.

In Figure 1.3 below, slots with picks are marked in black. For illustration

purposes, and also for the warehouse instances (based on real historical data) that

we perform our experiments on, the depot is in front of the front aisle (also front

cross-aisle of block 3) of the warehouse, aligned with the leftmost aisle of the

warehouse. Note that in reality, the depot need not be at the position as shown

in Figure 1.3, and can for e.g., lie anywhere along the front or rear aisle of the

warehouse.

Figure 1.3: Structure of a warehouse with pick locations [2]

Throughout this thesis, we denote

• na = number of aisles

• nc = number of cross-aisles

• ns = number of shelves stacked vertically
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• np = number of distinct products

• nl the number of locations per aisle side (as a picker can pick from either

side of the subsaisle)

Here, nl can be interpreted as the number of pallets in each shelf. As an

example in Figure 1.3, we have na = 6, nc = 4, nl = 21. ns and np is dependent

on the order file data, which will be discussed in later chapters.

1.4.2 The Problem Description

Let P denote the set of products whose storage slots in the warehouse are known

and L be the set of locations in the warehouse where a picker can pick up products.

For example, these locations are the middle of an aisle containing products on both

sides in different shelves, and from where the picker can reach these products. To

be precise, each location L ∈ L contains a subset of products.

Definition 1.4.4. An order is given by a list of picks, i.e. a set of |P| products,

indexed from 1 to m and described by their location in the warehouse.

Let O denote the set of orders to be collected. Then each o ∈ O contains a

subset of products Po ⊆ P . Similarly, for each o ∈ O, the subset of locations

Lo ⊆ L contains all products in Po, and it is possible that multiple products from

the same order are in a single location. We have L(O) =
⋃
o∈O Lo to represent the

set of locations that contains all products that need to be picked from all orders.

Also let dlm ≥ 0 be the distance between locations l,m ∈ L which are symmetric,

such that dlm = dml.
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Let T denote the set of available pickers such that T = |T |, B be the number

of baskets that a picker can carry and bo be the known number of baskets required

to store all products in order o ∈ O. Here, we made the assumption that a basket

will only consist of products from a single order, even if it is not filled to capacity.

Lastly, let s denote the depot (origin where pickers depart from and return to), and

let dsl ≥ 0 be the distance between location l and s.

The problem is stated as follows: given |P| products to pick in a rectangular

warehouse, what is the minimum number of pickers required and the shortest tour

(undertaken by each picker) which begins and ends at the depot to collect all these

products?

The problem of routing each picker to get the shortest tour is a particular case

of the Traveling Salesman Problem (TSP) [4], which is one of the most extensively

studied problems in combinatorial optimization [6], and it is probably the most

notorious problem in Operations Research as it is very easy to explain, yet tempting

to try and solve. The TSP is also NP−hard [7]. In the TSP, the salesman must

visit each of the n cities exactly once and then return to the origin. The objective is

thus to find the order in which he should make his tour, so as to finish it as quickly

as possible. In this thesis, the objective of the routing policy is to sequence the

items on the list of picks, to ensure a good route through the warehouse.

Orders received by a warehouse can be rather large. In such cases, each order

can be picked by a single picker. However, when orders are small, it is possible to

reduce picker traveling times by grouping orders together subjected to a picker’s

carrying capacity, as lesser number of pickers are required, hence possibly resulting

in an overall traveling time. Thus, we arrive at the following definition:

Definition 1.4.5. Order batching is defined as the method of finding an optimal
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partitioning of a set of orders into a number of sub-sets, where each of these sub-sets

can be retrieved by a single picker [4]. Moreover, the problem is NP−hard [5].

Let P denote the set of all partitions of O, the set of orders. Then for P ∈ P,

a partition P of O is feasible if the picker capacity is not violated, i.e. the total

weight of all the orders with their items in each p ∈ P does not exceed the picker’s

capacity c. Note that each p is a set of orders, i.e. p ⊆ O. Let dp be the distance

required to pick all items in p. Then we have dP =
∑

p∈P dp to be the total distance

covered across all p ∈ P . Let wp be the weight of each p ∈ P . The order batching

problem is then to find a feasible partition with the minimum distance:

min
P∈P

dP (1)

subject to wp ≤ c, ∀p ∈ P (2)

Example 1.4.2. Suppose that the picker has a capacity of 8 items and that we

have 3 orders: O = {o1, o2, o3}, where the weights of the orders (in terms of

number of items) are w1 = 4, w2 = 6, w3 = 4 respectively. It is known that the

distance required to pick all items in orders o1, o2, o3 are 70, 92, 77 respectively.

Furthermore, the distance required to pick all items in the combined order o1 ∪ o3

is 115. Thus we have P = {P1, P2}, where

P1 = {{o1}, {o2}, {o3}}, P2 = {{o1, o3}, {o2}}

Since dP1 = 70 + 92 + 77 = 239 and dP2 = 115 + 92 = 207, we have the feasible

partition with the minimum distance to be P2 = {{o1, o3}, {o2}}.
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1.4.3 Useful Resources

Throughout this thesis, we illustrate some examples with images of a warehouse

with predefined parameters. Those not cited are either generated with Interac-

tive Warehouse, publicly accessible at http://www.roodbergen.com/w

arehouse/frames.htm, or with whopt.exe software publicly available at

http://www.roodbergen.com/whopt/whopt.exe. Routes from rout-

ing heuristics (to be introduced in later chapters) can also be drawn using these

software.

1.5 Summary of Contributions

In this thesis, we demonstrate the impacts by various methods of solving with

different batching and routing heuristics on the objective value and the computation

time. In particular, we showed that in batching, having an optimal solver for routing

of pickers does not always yield the lowest objective value. Methods of solving

which utilize routing heuristics do result in a lower objective value as compared to

the method where an optimal solver is used for picker routing. The second main

contribution of this thesis is our recommendations made in answering the two main

questions in our business problem, where we showed that the method of batching

with routing heuristics and with routing of pickers with their batched orders solved

optimally formed majority of the recommended methods of solving across all the

warehouse instances.

http://www.roodbergen.com/warehouse/frames.htm
http://www.roodbergen.com/warehouse/frames.htm
http://www.roodbergen.com/whopt/whopt.exe


2
Literature Review

2.1 Heuristics

2.1.1 Background & Applications

In mathematical optimization, most of the practical problems that we wish to solve

are NP-hard. Heuristics or approximation algorithms are techniques designed to

"solve" discrete optimization problems quickly. To be precise, they are optimization

methods that attempt to make use of problem-specific information to obtain a high-

quality solution for the problem and that there is no guarantee that they are able

to find the optimal solution [8]. The main goal of heuristics is to obtain a "good"

enough feasible solution quickly (e.g. an upper bound solution to an optimal

solution of a minimization problem), which is usable in actual operations.

11
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Heuristics are often crafted from information (i.e. problem-specific) about

high-quality solutions and also takes into account a fixed set of rules. In most cases,

it is noted that as the number of problems increases, the effectiveness of a particular

method decreases. Thus, the effectiveness of the methods can be improved by

narrowing down the problem and reducing the scope of its application.

2.1.2 Trade-offs

Where there are benefits to utilizing heuristics, there are notable trade-offs when a

heuristic is used instead of an optimal algorithm, and also between heuristics that

are used for a problem instance. They are as follows:

• Optimality:

– Does the heuristic guarantee that the best solution will be found?

– Must the best solution be found?

• Completeness:

– Is the heuristic able to find all the solutions (given that several exists)?

– Are all the solutions needed?

• Accuracy and Precision:

– Are the solutions obtained within a certain bound? For example, within

a confidence interval.

• Execution Time:

– Is this the heuristic with the quickest run-time?
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Given all these trade-offs, people implementing the heuristics will have to think

hard about what is the end deliverable to for example, the business problem at

hand. A consequence of these uncertainties is the narrowing down of the method

of approach to a problem, and the experiments with several kinds of heuristics in

an attempt to find the most suitable heuristic for each problem.

2.2 The Picker Routing Problem

2.2.1 Exact Methods In Solving Picker Routing

Various methods have been formulated and used to solve the TSP optimally. One

well-known method is the Concorde [9] TSP solver, which is a program for solving

the TSP. For the case of picker routing in warehouses, according to [1], the authors

Ratliff and Rosenthal showed that the picker routing problem can be solved polyno-

mially via a dynamic programming approach, for warehouses with a single block.

Their algorithm was later generalized and the TSP in any series parallel graph

was shown to be solvable in polynomial time. In particular, the TSP on sparse

graphs was characterized as a Graphical TSP (GTSP). Unlike Ratliff & Rosenthal,

it is assumed that warehouses may contain multiple blocks. To the best of the

authors’ knowledge in [1], the GTSP in graphs made up of several connected series

parallel subgraphs (e.g. warehouses with multiple blocks) has not been shown to

be efficiently solvable.

Let dij be the distance between two points i and j. Let also N be the set of
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points (cities) and S be a subset of cities that are to be traversed. Define

xij =


1 if salesman goes directly from town i to town j,

0 otherwise.

The problem can then be formulated as the following, which will be passed to a

solver (e.g. CPLEX) which will return optimal solutions:

min
n∑
i=1

n∑
j=1

dijxij

subject to
∑
j:j 6=i

xij = 1 for i = 1, . . . , n

∑
i:i 6=j

xij = 1 for j = 1, . . . , n

∑
i∈S

∑
j 6∈S

xij ≥ 1 for S ⊂ N,S 6= ∅

xij ∈ {0, 1} for i = 1, . . . , n, j = 1, . . . , n, i 6= j

2.2.2 Heuristic Methods in Solving Picker Routing

In actual practice, the problem of routing pickers in a warehouse to pick all

items in the order allocated to them is mainly solved using heuristics. The main

reasons [4, 5, 2] why they are used instead of optimal algorithms are as follows:

1. Not every warehouse is able to utilize an optimal algorithm. For example,

a large warehouse instance with 8 aisles, 3 blocks and 33 possible pick

locations per aisle is shown to not have any optimal solution within a time

limit of 6 hours when trying to batch orders and route pickers optimally in
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[1]. Thus in reality, it may not be practical to use optimal algorithms due

to possibly long computation times which may not even yield the required

optimal solution within the day orders have been received by the warehouse.

2. Optimal routes may seem illogical to pickers. As a result, they choose to

deviate from the computed routes assigned to them.

3. An optimal algorithm cannot take into account aisle congestion, whereas it

is possible to avoid (or reduce) with routing heuristics.

One of the simplest and commonly used heuristics for picker routing is the

S-shape heuristic. When routing pickers with this heuristic, the picker has to

traverse aisles that contain at least one pick entirely, except possibly the last visited

aisle. Aisles without picks are not entered at all. Once all aisles with picks have

been visited, the picker returns to the depot. Another heuristic for picker routing is

the Largest Gap heuristic, where a picker enters an aisle as far as the largest gap

within an aisle and leaves each aisle from the same end. The gap is the separation

between any two adjacent picks in the aisle, between the first pick and the front

aisle, or between the last pick and the back aisle. If there is only one pick in the

aisle, the picker picks and returns to the cross aisle it came from.

The above heuristic methods were originally developed for single-block ware-

houses, but they can be used for multiple-block warehouses with certain modifica-

tions [4]. Methods for routing pickers in multiple-block warehouses can be found

in [2], and will be explained in deeper detail in the next chapter of this thesis.



16 CHAPTER 2. LITERATURE REVIEW

2.3 The Order Batching Problem

2.3.1 Exact Methods In Solving Order Batching

The order batching problem with a general objective of minimizing the total

travel time was shown to be NP−hard by the authors in [5]. They employed a

branch-and-price algorithm to solve instances of modest size (mostly warehouse

instances with 10 & 20 aisles and 20 to 30 pick locations per aisle side, and 15

to 32 number of orders) to optimality. In the case of larger instances, an iterated

descent approximation algorithm was suggested. In [1], the authors formulate and

solve the Joint Order Batching and Picker Routing Problem (JOBPRP), where the

task is to find minimum-cost closed walks, where each picker visits all locations

that allow the pickers to pick all products from their assigned orders. In their

previous work, they formulated a directed model that involves exponentially many

constraints to enforce connectivity requirements for closed walks. A branch-and-

cut algorithm that relied on this non-compact model in their previous work was

introduced They also examined the compact formulations in their previous work

(which are based on network flows) using the CPLEX branch-and-bound solver.

In [1], the authors focused on improving the non-compact formulation of the

JOBPRP. They introduced several valid inequalities (cuts) based on a sparse graph

representation of warehouses and showed that the introduction of the cuts greatly

improved computational results. In particular, they show that when batching and

routing problems are solved separately, optimal routing can be computed very

quickly once all orders have been assigned to pickers. In this thesis, we used the

integer linear programming (ILP) formulation for the JOBPRP introduced in [1],
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with constraints (1)− (21).

Notations

In this thesis, we view the JOBPRP as a graph optimization problem like in [1]. To

define it, a directed and connected graph D = (V,A) is introduced, where the set

of vertices V is given by the union of s, a set V (O) containing a vertex for every

l ∈ L(O) and a set VA of artificial locations, which are located in corners between

aisles and cross-aisles and do not contain products to be picked. Furthermore, we

have the sets Vo which contain a vertex for every l ∈ Lo, and V (O) =
⋃
o∈O Vo.

Hence, we have V = {s} ∪ V (O) ∪ VA and |V | = 1 + |V (O)|+ |VA|.

In the ILP formulation of the JOBPRP, vertices are allowed to be visited

multiple times, but each arc cannot be traversed more than once. In particular, the

formulation uses exponentially many constraints to enforce the connectivity of the

closed walks [1]. Let zot indicate whether (zot = 1) or not (zot=0) picker t picks

order o ∈ O, xtij to indicate whether (xtij = 1) or not (xtij = 0) arc (i, j) ∈ A

is traversed by trolley t, αt to indicate whether (αt = 1) or not (αt = 0) picker t

picks at least one order and yti to indicate whether (yti=1) or not (yti = 0) vertex

i ∈ V \ {s} is visited by trolley t. Furthermore, we have gti ∈ Z+ to indicate the

outdegree of vertex i ∈ V in the closed walk for trolley t.

Let δ−(W ) = {(i, j) ∈ A : i 6∈ W, j ∈ W} denote the set of inward-directed

arcs, δ+(W ) = {(i, j) ∈ A : i ∈ W, j 6∈ W} denote the set of outward-directed

arcs, and A(W ) = {(i, j) ∈ A : i ∈ W, j ∈ W}. Lastly, let |δ+(i)| denote the

maximum outdegree of i ∈ V . We are now ready to state the ILP formulation for

the JOBPRP in the following section, where we used the first 21 constraints for

exact solving in our experiments.
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The JOBPRP Formulation

min
∑
t∈T

∑
(i,j)∈A

dijxtij (1)

subject to
∑
o∈O

bozot ≤ Bαt ∀t ∈ T (2)

∑
t∈T

zot = 1 ∀o ∈ O (3)

∑
(i,j)∈δ+(i)

xtij ≥ zot ∀o ∈ O, t ∈ T , i : l(i) ∈ Lo

(4)∑
(i,j)∈δ+(i)

xtij =
∑

(i,j)∈δ−(i)

xtji ∀i ∈ V, t ∈ T (5)

∑
(s,j)∈δ+(s)

xtsj =
∑

(j,s)∈δ−(s)

xtjs = αt ∀t ∈ T (6)

xtij ≤ αt ∀(i, j) ∈ A, t ∈ T (7)

zot ≤ αt ∀o ∈, t ∈ T (8)∑
o∈O

zot ≥ αt t ∈ T (9)

∑
(i,j)∈δ+(i)

xtij = gti ∀i ∈ V, t ∈ T (10)

yti ≥ xtij ∀(i, j) ∈ A, t ∈ T (11)∑
j∈W

gtj ≥ yti +
∑

(j,k)∈A(W )

xtjk ∀i ∈ W,W ⊆ V \ {s}, |W | > 1, t ∈ T

(12)

xtij ∈ B ∀(i, j) ∈ A, t ∈ T (13)

zot ∈ B ∀o ∈ O, t ∈ T (14)

0 ≤ αt ≤ 1 t ∈ T (15)

yti ≤ αt ∀i ∈ V, t ∈ T (16)
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In the ILP formulation of the JOBPRP above, constraint (2) ensures that the

number of baskets (carted around by a picker on a trolley) does not exceed its

given capacity and constraint (3) ensures that each order is collected by exactly one

picker. Constraint (4) enforces the condition that if an order is assigned to a picker,

then the vertex that stores a product of this order will be visited by the picker at

least once. Constraint (5) ensures that for every arc that leads to a vertex, there is

one that departs from it. Constraint (6) ensures that if a picker picks an order, it

must depart from the origin s (depot). Without significant loss of generality, it is

assumed that the picker visits the source only once. Constraints (7) and (8) ensure

that a picker visits an arc or picks an order only if it is used, while constraint (9)

ensures that if a picker is required, then at least one order is picked by the picker.

Constraints (10) and (11) define the outdegree and yti variables for each vertex

i. According to [1], if the maximum outdegree of each vertex was not allowed

to be greater than one but instead letting gti ∈ {0, 1}, it would result in yti = gti,

and constraint (12) would change to the generalized subtour breaking constraint∑
(j,k)∈A(W ) xtjk ≤

∑
j∈W\{i} ytj . In particular, constraint (12) allows subtours

found in closed walks as long as at least one vertex in the cycle has an outdegree of

2. Constraints (13)− (16) deal with the variables. The authors in [1] noted that the

αt variables will be forced to binary even though constraint (15) allows them to be

fractional as this is due to the influence of other constraints (such as (6) and (13)).

Symmetry Breaking Constraints

Symmetry breaking constraints were also introduced to break the symmetry in the

space of feasible solutions. For example, Branch-and-bound algorithms based on

symmetric formulations tend to perform poorly, as they enumerate search regions
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that lead to the same solution. Thus, the following constraint was added to the

JOBPRP:
o∑
t=1

zot ≥ 1, o = 1, . . . , T (17)

(17) enforces that the first order goes to the first picker, the second order goes to

either the first or second, and so forth. The following constraint was also added:

αt = 1, t = 1, . . . ,
⌈∑
o∈O

bo/B
⌉

(18)

(18) ensures that the first minimum number of pickers are used.

Further symmetry breaking constraints were introduced as in order to break

symmetry in directions adopted by each picker walk, then as distance is a symmetric

function, we can enforce the condition that the arc out of s for a picker is to the left

(west) of the arc into s. The constraints which enforce this condition are:

WA∑
k=a

xt,v(k,1),s ≥
WA∑
k=a

xt,s,v(k,1), ∀a ∈ A \ {1}, t ∈ T (19)

We also enforce the following constraints centered around the first cross-aisle

vertex:

xt,v(a,1),S(a,1,1) ≥ xt,s,v(a,1), ∀a ∈ A, t ∈ T (20)

xt,S(a,1,1),v(a,1) ≥ xt,v(a,1),s,∀a ∈ A, t ∈ T (21)

(20) ensures that ensures that the picker goes down the associated subaisle of

the initial artificial vertex that he/she visits from the source, instead of going to

another artificial vertex. (21) ensures that when the picker returns from an artificial
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vertex, he/she must have come from the associated subaisle(similar to Constraint

20).

The above formulation (JOBPRP) along with the additional constraints (17) -

(21) were already implemented in MiniZinc by a previous intern (Joel) at Cosmiqo.

Since the main scope of the project is to focus on heuristics, we will not be

developing the JOBPRP any further due to time constraints and that the current

formulation is sufficient to yield optimal solutions.

2.3.2 Heuristic Methods In Solving Order Batching

Several heuristic methods to solve the order batching problem (as defined in

the previous chapter) have been developed in recent decades. Notable methods

include cluster analysis of orders to group them together [10], seed-order selection

rules [11] and the widely-adopted Time Savings Heuristic [12]. In the method of

Cluster Analysis, similarity coefficients for all possible order pairs are computed

and sorted, and order pairs are combined into a new order in order of decreasing

similarity coefficients. For seed-order selection, to form an order batch, a seed

order is first selected from the pool of orders using a seed-order selection rule. The

selected seed order will be the first order added to the order batch, and updates

will be made to the remaining capacity of the picker. Following which, another

order selection rule is adopted to select another order from the pool of orders and

add it to the batch of orders, while not exceeding the picker’s capacity. This order

selection process is repeated until the picker does not have any capacity for any

more orders. In this thesis, we focus on the Time Savings Heuristic and implement

it in our experiments, and we describe it as follows.
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Time Savings Heuristic

The Time Savings Heuristic (TSH) [12] is used to compute batching of orders in

the warehouse with a routing heuristic, that gives routing estimates used to compute

the time (distance) savings. Let the time savings sij be defined by

sij = ti + tj − tij

where ti, tj are the order pick times for orders i and j respectively, and tij is the

order pick time of the order which consists of orders i and j combined. Both the

S-shape and Largest gap routing algorithms are used.

The following algorithm is used to compute the time savings matrix and order

batches:

Basic variant, C&W(i) [12, 13, 14]

The algorithm consists of the following steps:

1. Calculate the savings sij for all possible order pairs i, j.

2. Sort the savings in decreasing sequence.

3. Select the pair with the highest savings. If there is a tie, select a random pair.

4. Now, three cases can be distinguished:

(a) Neither of the orders have been included in an existing route and the

remaining capacity of the order picker is sufficient for both orders -

include both orders in a new route.

(b) Exactly one order has been included in an existing route. If the other

order fits in this route, add it to the route. If not, proceed with step 5.
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(c) Both orders have been included in an existing route - go to step 5.

5. Select the next order combination from the list and repeat step 4 until all

orders have been included in a route.

If all order combinations have been selected, but not all orders have been included

in a route: create a new route for every remaining order.
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3
Methods

3.1 Our Approach to Solving the JOBPRP

3.1.1 Objectives

The main objective of the project is to investigate the trade-offs when heuristics

are used to obtain ’good enough’ feasible solutions to the JOBPRP as compared to

when the problem is solved to optimality with a solver.

The methods employed (see later section) allow us to optimize the order picking

process by batching several orders together, and by planning a good route (e.g.

with heuristics) to minimize the distance required to pick up all the items in the

orders. In particular, the proposed methods should scale up to typical warehouse

sizes.

25
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3.1.2 Methods Employed In Experiments

We adopted the ILP formulation of the JOBPRP with constraints (1)−(21) from [1],

along with Methods 1 to 3 in the paper in our experiments.

Initially, we tried to solve the ILP formulation optimally. This method of using

an ILP solver was shown to yield poor results (see later chapter on Results) in the

form of sub-optimal solutions and extensive run-time of the solver used. As the

ILP formulation is NP−hard, we adopted batching and routing heuristics as an

alternative to solving the ILP formulation optimally. For batching, it is computed

via the Time Savings Heuristic (TSH) which also employs a routing heuristic

to compute routing estimates, and for picker routing we employed the Nearest

Neighbor, S-shape and Largest Gap heuristics. Thus, for each heuristic method

of solving, there are two instances in which routing heuristics are used - in the

TSH as well as routing if pickers after batching. In particular, we vary the routing

heuristics used for each Method in both batching and routing of pickers after final

assignment of orders.

To observe the benefits of replacing routing heuristics with optimal routing, we

compare between Methods 1 to 3 in the subsections that follow, where we employ

the Concorde [9] TSP solver for optimal routing.

ILP Solver

To obtain optimal solutions to the ILP formulation, we employed a branch-and-cut

solver to solve the formulation written in an open-source constraint modeling

language.
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Method 1

In this method, we first compute the order batching via the time savings heuristic

(TSH). Picker routing heuristics were used to obtain estimates of the partial route

distances, for use in the TSH. Partial routes were computed by running each of the

following heuristics: Nearest Neighbor, S-shape and Largest gap. To be precise,

this method is used to obtain upper bound solutions to the JOBPRP, solely by the

use of heuristics.

Method 2

This method involves the use of a heuristic with optimal routing for the final

assignment of orders. In other words, we use the routing estimates obtained during

the routing algorithms in the TSH (to batch orders), but once all orders have been

assigned (batched), we solve for each picker optimally to find its optimal route.

For our experiments, in the order batching stage of Method 2, we employ the

TSH which uses the routing heuristics introduced in Method 1. Then once order

batches are computed in Python 3, to solve for each picker’s route optimally (with

their batched order), we employ the Concorde TSP Solver. In particular, once

orders have been batched to each picker, the JOBPRP is equivalent to the general

TSP problem [7] as picker capacities have already been handled in the routing

heuristics in the TSH.

Method 3

Here, instead of using routing heuristics to compute the routing estimates in order

batching and routing of pickers after final assignment of batched orders, we employ
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the Concorde TSP solver to compute optimal routes.

3.2 Routing Heuristics

3.2.1 Nearest Neighbor Heuristic

The Nearest Neighbor (NN) algorithm was one of the first algorithms used to

determine a solution to the traveling salesman problem. In it, the salesman starts at

a random city and repeatedly visits the nearest city until all have been visited. It

quickly yields a short tour, but usually not the optimal one.

The NN algorithm is easy to implement and executes quickly, but it can some-

times miss out on shorter routes which can be observed from a human perspective,

due to its "greedy" nature. In the worst case, the algorithm results in a tour that is

much longer than the optimal tour.

Algorithm 1: Nearest Neighbor
input :A list of picks

output :Sequence of nodes to be visited

1 Set current position (start) to depot

2 while there are picks not yet picked do

3 Find the shortest path from the current position to the next closest

unpicked item

4 Traverse the shortest path to this pick and mark this pick as picked

5 Set current position to the pick node

6 end while

7 Return to depot
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3.2.2 S-shape Heuristic

The S-shape heuristic [2] is a picker routing heuristic used to obtain partial route

estimates for use in the TSH, and also to route all pickers individually once orders

have been batched to each of them. The main idea of the S-shape heuristic is to

skip all subaisles in which no picks are present, and any subaisle with at least one

pick is traversed entirely. The following is an example of the S-shape routing1:

Figure 3.1: A warehouse with order-picking performed by S-shape routing

The following is our implementation of the S-shape heuristic, built up upon the

original implementation in [2]:

1Retrieved from: http://www.roodbergen.com/warehouse/background.php
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Algorithm 2: S-shape
input :A list of picks

output :Sequence of nodes to be visited

1 Retrieve all subaisles with at least 1 pick

2 Group all these subaisles (denote a subaisle as sa) with picks into blocks

and sort the blocks in decreasing distance from the depot to get Bs

3 Determine the closest (left or rightmost) subaisle with pick in the furthest

block from depot

4 Traverse the shortest path P from the depot to the front of this subaisle and

then to the furthest pick in the subaisle

5 Remove all picks from all blocks that lie on this shortest path to get

resulting blocks B(1)
s

6 Remove all subaisles in B(1)
s that no longer have any picks to get resulting

blocks B(2)
s

7 node_sequence← P



3.2. ROUTING HEURISTICS 31

8 for b in B(2)
s do

9 Determine the closest sa (left or rightmost) in the next block from the

current position

10 if closest sa is rightmost sa in next block then

11 Reverse the order of b

12 end if

13 # reverse the order of nodes in each odd-numbered sa in each block

for sa in b do

14 if sa is even-numbered and not last subaisle then

15 node_sequence ← node_sequence + sa

16 else if sa is even-numbered and last subaisle then

17 node_sequence ← node_sequence + path to last pick in sa

18 else

19 node_sequence ← node_sequence + reverse(sa)

20 end if

21 end for

22 end for

23 Traverse across all nodes in node_sequence

24 Return to depot

We first describe our implementation of the S-shape heuristic. The closest

(left or rightmost) subaisle with pick(s) in the block furthest from the depot is first

determined. The picker initially traverses the shortest path from the depot to the

furthest pick in the furthest block (with at least one pick) from the depot. At this

point, there are two possibilities: (a). There are no picks left in the current block;
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(b). There is at least one pick remaining in the current block.

If there are picks still remaining in the current block, the picker traverses the

remainder of the subaisle entirely and arrives at a cross-aisle node at the back

cross-aisle of the current block (for e.g. the picker is at (2) in Figure 3.1). The

picker then traverses the cross-aisle to the back of the next closest subaisle with

at least one pick and traverses it entirely (e.g. subaisle with back cross-aisle node

(3) in Figure 3.1). This process is repeated until there are no more picks left in the

current block.

When there are no more picks in the current block, the picker traverses the

shortest path from the last pick in the current block to the closest (left or rightmost)

subaisle with pick(s) in the next block that is closer to the depot (e.g. subaisle

with back cross-aisle node (4) in Figure 3.1). The above process of S-routing is

repeated until there are no more picks left to be picked in the warehouse. At this

point, the picker traverses the shortest path back to the depot.

3.2.3 Largest Gap Heuristic

The Largest Gap heuristic is largely similar to the S-shape heuristic, with the

exception of blocks being partitioned into front and back half-blocks by the largest

gap between two adjacent picks in each subaisle.

The following is an example of the Largest Gap Heuristic in action2:

2Retrieved from: http://www.roodbergen.com/warehouse/background.php
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Figure 3.2: A warehouse with order-picking performed by Largest Gap routing

We define d1 (resp. d2) to be the total distance traversed by the picker when

picking all picks from the front (resp. back) of the subaisle, and d3 to be the

maximum of all possible differences between the subaisle length and the gap

between any two adjacent nodes in the subaisle. Let the minimum of the distances

be denoted as mind = min{d1, d2, d3}. Thus, the process of partitioning each

block by the largest gap is carried out by the following conditions for each subaisle:

1. If mind = d1, add the subaisle to the list of front half-blocks.

2. If mind = d2, add the subaisle to the list of back half-blocks.

3. Else partition the subaisle into front and back subaisles and add the half-

subaisles into the respective front and back half-blocks.

Our implementation of the Largest Gap heuristic introduced in [2] is as follows:
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Algorithm 3: Largest Gap
input :A list of picks

output :Sequence of nodes to be visited

1 Retrieve all subaisles with at least 1 pick

2 Group all these subaisles (denote a subaisle as sa) with picks into blocks

and sort the blocks in decreasing distance from the depot to get Bs

3 Determine the closest (left or rightmost) subaisle with pick in the furthest

block from depot

4 Traverse the shortest path P from the depot to the front of this subaisle and

then to the furthest pick in the subaisle

5 Remove all picks from all blocks that lie on this shortest path to get

resulting blocks B(1)
s

6 Remove all subaisles in B(1)
s that no longer have any picks to get resulting

blocks B(2)
s

7 # Partition each subaisle in B(2)
s into front and back subaisles, then

combine all nonempty back (resp. front) sa together to get B(3)
s , a list of

half-blocks

B
(3)
s ← [ ]
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8 for b in B(2)
s do

9 front_b ← [ ]

10 back_b ← [ ]

11 for sa in b do

12 d1 ← total distance when picking all picks from the front of sa

13 d2 ← total distance when picking all picks from the back of sa

14 if length(sa) > 1 then

15 Calculate gap between all adjacent node pairs in sa

16 d3 ← max(subaisle length− gap between 2 adjacent nodes)

17 end if

18 mind = min{d1, d2, d3}

19 if mind = d1 then

20 front_b ← front_b + sa

21 else if mind = d2 then

22 back_b ← back_b + sa

23 else

24 front_b ← front_b + front_sa

25 back_b ← back_b + reverse(back_sa)

26 end if

27 end for

28 B
(3)
s ← B

(3)
s + [back_b, front_b]

29 end for

30 node_sequence ← P
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31 for b in B(3)
s do

32 current position← last node in node_sequence

33 Find the distances to the leftmost and rightmost sa in b from

current position

34 if closest sa is rightmost sa in b then

35 reverse(b)

36 end if

37 node_sequence ← node_sequence + b

38 end for

39 Traverse all the nodes in node_sequence

40 Return to depot

We illustrate our implementation of the Largest Gap heuristic with the example

from Figure 3.2. The picker traverses the shortest path from the depot to the

furthest pick in the closest (left or rightmost) subaisle with pick(s) in the furthest

block from the depot. With the remaining picks in the warehouse, partition each

block into front and back half-blocks by the largest gap. At this point, we have a

list of half blocks in order of blocks from the furthest to the closest to the depot.

The picker now finds the next closest back subaisle (from the back half-block of

the furthest block) and traverses the shortest path to the back cross-aisle node of this

subaisle, picks all items from the back and then returns to the back cross-aisle node

that he came from. This process is repeated until there are no more picks left in the

back half-block (e.g. (1)→ (2)→ (3)). Note that if initially there are no picks in

the back half-block, the picker finds the closest (left or rightmost) front subaisle

with pick(s) and traverses the shortest path to the front of this subaisle, picks all
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items from the front and returns back to the front cross-aisle node, repeating the

process until there are no picks left to be picked in the front half-block.

Once there are no picks left to be picked in the current block, the picker

traverses the shortest path to the closest back subaisle with pick(s) in the next

block. The process in the furthest block is repeated for this block and subsequent

blocks until all picks in the warehouse have been picked. At which point, the picker

traverses the shortest path back to the depot.

3.3 Batching Heuristics

3.3.1 Time Savings Heuristic

Definition 3.3.1. We define a router to be a function that takes in an order to be

completed and computes a tour required to pick all items in the order. In particular,

we define a savings (resp. batch) router as a function sr(order) (resp. br(order))

that takes as input an order (a set of items), and outputs a tour that contains all the

items in the order.

Remark. Batches are a partition of orders.

Let sij = di + dj − dij , where di = distance(sr(i)), dj = distance(sr(j)) are

the distances required to pick order i and j respectively, and dij = distance(sr(i∪

j)) is the distance required to pick up the order where orders i and j are combined.

In our project, we parameterized the TSH with 2 parameters as input, a savings

and batch router. In computing savings, a routing heuristic which is denoted as

a savings router, is used to compute the routes (resp. distance traveled) for each

picker which is used in the computation of savings. Once all orders have been
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batched, a batch router which is a routing heuristic is used to compute the route

and distance for each batch. We implemented the TSH with the pseudocode:

Algorithm 4: Time Savings
input :A list of orders, a savings & batch router

output :Sets of routes computed for each batched order

1 savings ← { }

2 for orders i = 1, ..., n, j = 1, ..., n, i 6= j do

3 if weight(i) + weight(j) ≤ picker capacity then

4 sij ← di + dj − dij

5 savings ← savings ∪ {sij}

6 end if

7 end for

8 Sort savings in decreasing sequence

9 batches ← { }
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10 for sij in savings do

11 if i and j /∈ batches then

12 batches ← batches ∪ {i, j}

13 end if

14 if i ∈ batches and j /∈ batches and

weight(batchi) + weight(j) ≤ picker capacity then

15 batchi ← batchi ∪ {j}

16 end if

17 if i /∈ batches and j ∈ batches and

weight(i) + weight(batchj ) ≤ picker capacity then

18 batchi ← batchj ∪ {i}

19 end if

20 end for

21 routes ← { }

22 distances ← { }

23 for batch in batches do

24 batch route← br(batch)

25 routes ← routes ∪ {batch route}

26 distances ← distances ∪ {distance(batch route)}

27 end for

28 Return routes , distances

Example 3.3.1. Suppose that we have seven orders, each consisting of five different

items to be picked. In Figure 3.3 below, the warehouse has seven aisles, with 15

item (resp. pick) locations per rack (resp. aisle). Here, the aisle length in 15m, with
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a crossover distance (to next adjacent aisle) of 4m, and the depot is located at the

center of the first aisle. Assume for this example that the picker’s capacity is eight

items maximum, regardless of their actual weight. We define the weight of order i

as wi, which corresponds to the number of items in that order. Suppose that there

are seven orders, where w1 = 4, w2 = 6, w3 = 4, w4 = 2, w5 = 3, w6 = 5, w7 = 1.

We now illustrate how TSH works based on the following warehouse instance

which we generated3 using the above warehouse parameters:

Figure 3.3: An illustration of a warehouse with a block containing 7 aisles, with all
items indicated with their order number.

Order i 1 2 3 4 5 6 7 Weight wi
1 - 4
2 X - 6
3 59 X - 4
4 59 59 75 - 2
5 67 X 94 54 - 3
6 X X X 78 67 - 5
7 -10 9 9 -4 9 -10 - 1

Table 3.1: An example of a savings (in s) matrix

3We used the Interactive Warehouse application created by Kees Jan Roodbergen:
http://www.roodbergen.com/warehouse/frames.htm
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Let the pick locations be as shown in Figure 3.3. Then we have the savings

matrix as shown in Table 3.1, where each entry in the matrix corresponds to the

savings sij for any order i, j, and with the respective order weights. Note that the

savings matrix is symmetric, and an X indicates that the order combination is not

possible due to the limitation of the picker’s capacity. In this example, the savings

router used is S-shape. The savings algorithm then proceeds in the following steps:

1. Select the order pair {3, 5}, which has the largest savings. Since neither

order is in an existing route and their total weight is w3 + w5 = 7 < 8, we

cluster them together in a single route.

2. The order pair with the next largest savings is {4, 6} with a savings of 78.

Similarly, as neither order is in an existing route and their total weight is less

than the picker’s capacity, we cluster them in a single route.

3. The next largest savings is 75, which corresponds to {3, 4}. However, orders

3 and 4 are already in an existing route.

4. The next largest savings is 67, which corresponds to {1, 5} and {5, 6}. We

first select {1, 5}, which has a total weight of 7 and consists of order 5, which

is already in an existing route. As the total weight of the route containing

orders 1, 3, 5 is larger than the picker’s capacity, it is not possible to add

order 1 to the existing route. Similarly, the order pair {5, 6} cannot be added

to any existing route as both orders 5 and 6 are already in existing routes.

5. The next possible pair is {2, 7}. As neither of these orders are in an existing

route, and that their total weight is w2 + w7 = 7 < 8, we cluster them into a

new route.
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6. At this point, the order remaining is order 1, which has not been added to

any existing route. Since it cannot be added to any existing route due to pick

capacity reasons, we create a new cluster for it. As a result, we have the

resulting clustering of orders: {{3, 5}, {4, 6}, {2, 7}, {1}}.

7. Once clustering of orders have been computed, for each cluster ck, we use

the batch router to compute the route for each cluster by invoking: br(ck).

3.4 Summary of Methods

In this thesis, we define the TSH to have two parameters: Savings Router & Batch

Router. Here, Savings Router denotes either a routing heuristic (Nearest Neighbor,

S-shape, Largest Gap) or an Optimal router (Concorde TSP Solver).

In summary, we have the following table that shows the various combinations

across Methods 1 to 3:

Method 1 Method 2 Method 3
Savings Router Nearest Neighbor, S-shape, Largest Gap Nearest Neighbor, S-shape, Largest Gap Optimal
Batch Router Nearest Neighbor, S-shape, Largest Gap Optimal Optimal

Table 3.2: Breakdown of combinations of routers used in each method



4
Experiments

4.1 Objectives

The main overall objective of the project is to investigate the trade-offs when

heuristics are used to obtain ’good enough’ feasible solutions to the JOBPRP as

compared to when the problem is solved to optimality with a solver. The (heuristic)

methods employed allow us to optimize the order picking process by batching

several orders together, and by planning a good route to minimize the distance

required to pick up all the items in the orders.

In particular, we want to answer the following questions raised in the first

chapter:

1. Across all order and warehouse instances, what is the quality of solution vs

time trade-off?

43
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2. If I have a warehouse with X aisles and Y cross-aisles and a number of

orders to batch, what method should be used to solve the problem within the

time limit?

To answer the first question above, we show and discuss the results of median

quality of solution and median time across all methods of solving for each ware-

house instance, in the form of box plots for the quality of solution and tables for

both median objective value and time elapsed. Furthermore, we only include the

exact solving results for small warehouse instances as the large ones yielded very

little results and the solutions obtained were all sub-optimal.

As for the second question, it follows from the first in the form of recommen-

dations and deeper analysis, where we also compare the spread of the data (quality

of solution) on top of the medians.

4.2 Implementation

4.2.1 Routing Heuristics

In this section of the thesis, we introduce our implementations of the routing

heuristics in the following order: Nearest Neighbor, S-shape, Largest Gap, and

briefly describe how we upgrade the simplified versions of the heuristic to that of

the original in [2]. Once they were set up, we began working on the Optimal router

for use in Methods 2 and 3.
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Nearest Neighbor

In this thesis, we employed the Nearest Neighbor, S-shape and Largest Gap heuris-

tics for picker routing. Initially we began with the Nearest Neighbor heuristic as an

initial naive implementation to observe how routing takes place in our experiments,

and also as a soft start in configuring the Time Savings Heuristic (TSH), a batching

heuristic which uses a routing heuristic to compute routing estimates used in the

algorithm. Note that in practice, the Nearest Neighbor heuristic is not used for

picker routing as the routes may turn out as illogical to pickers, and the heuristic

may also result in ’bad routing’ in some worst-case scenarios. For example, in a

warehouse with 2 blocks with all but 1 pick in the block closest to the depot (i.e.

1 pick in furthest block), the picker may end up picking up all items in the block

closest to the depot and then traverse the shortest path to the last pick in the furthest

block. In this case, the picker may end up traversing along paths he/she has already

traversed on to get to the last pick. This results in much additional distance traveled

(resp. time). A snippet of the router class that employs the Nearest Neighbor

algorithm is as follows:

shortest_path = [start]

total_distance_traveled = 0

while unvisited:

lengths, shortest_paths =

shortest_path_to_all_nodes(shortest_path[-1],

self.shortest_paths, self.G)

# get the shortest path to unvisited node with min distance

closest_unvisited = min(unvisited, key=lengths.get)
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shortest_path_with_min_dist =

shortest_paths[closest_unvisited]

shortest_path += shortest_path_with_min_dist[1:]

total_distance_traveled += lengths[closest_unvisited]

unvisited.remove(closest_unvisited)

Here, unvisited is the list of picks in the order that are yet to be picked.

In our experiment setups, we used NetworkX1, which is a Python package

for the creation, manipulation, and study of the structure, dynamics, and func-

tions of complex networks. Initially for the Nearest Neighbor heuristic, in com-

puting shortest paths from a pick node to another, we computed them repeat-

edly using dijkstra_path(G, source, target[, weight]), which

returns the shortest path from source to target in a weighted graph G as the ware-

house can be treated as a weighted graph. This resulted in a long computation

time for a single order, spanning as long as over 4000 seconds in method (i)

for an order in a warehouse instance with 8 aisles, 2 blocks and 33 pick loca-

tions per aisle. We improved the computation time significantly to under 10

seconds for all orders of that warehouse instance by computing the shortest path

to all nodes from each pick node and then storing these shortest paths in a dictio-

nary. This was computed with single_source_dijkstra(G, source[,

target, ...]), which compute shortest paths and lengths in a weighted graph

G. We first import the NetworkX library as nx. The following is an example of

our implementation of the function to compute shortest paths:

def shortest_path_to_all_nodes(position, shortest_paths, G):

if position not in shortest_paths:

1See documentation at: https://networkx.github.io/documentation/stable/
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shortest_paths[position] =

nx.single_source_dijkstra(G, position)

return shortest_paths[position]

In this function, shortest_paths is the dictionary which stores the shortest

paths computed from the nodes. As a result, shortest paths need not be repeat-

edly computed and can be retrieved from the dictionary instead. Thus we also

implemented this method of computing shortest paths for other routing heuristics.

S-shape

Once the Nearest Neighbor heuristic was implemented, we began working on

implementing the S-shape and Largest Gap heuristics proposed in [2]. We started

with a simplified version of the S-shape and Largest Gap heuristics. In these

simplified heuristics, we route the picker in a standardized left-to-right fashion. In

other words, the picker travels to the leftmost subaisle in the furthest block from

the depot initially, then begins his/her routing from left to right. For example, in

the S-shape case, after completing his/her routing in a block, the picker will travel

to the leftmost subaisle with pick in the next block. Note that the picker will be

at the rightmost subaisle with pick in the current block before traveling to the

leftmost subaisle with pick in the next block, and that in the actual implementation

of S-shape, the picker travels to the closest subaisle with pick in the next block

upon clearing all picks in the current block he/she is in. It is clear that this

implementation tends to result in several possible worst case scenarios in routing,

for example starting from the leftmost subaisle with pick(s) in the next block may

not be the closest subaisle with pick(s) from the current position (a cross-aisle

node in the simplified heuristic implementation). We used the implementation of
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a simplified S-shape heuristic as a base which we built up on to upgrade it to a

working implementation of the S-shape heuristic as introduced in [2].

We have the following snippet of a key portion of our implementation of

S-shape in Python 3 which performs the routing with the S-shape:

node_sequence = [curr_pos]

for b in reduced_pick_blocks:

last_pos = node_sequence[-1]

closest_sa_and_path =

self.get_closest_sa_from_pick(b, last_pos)

closest_sa = closest_sa_and_path.closest_sa

updated_b = self.reverse_subaisles_order(b, closest_sa)

last_sa_in_b = updated_b[-1]

for sa in updated_b:

if updated_b.index(sa) % 2 == 0:

node_sequence += list(reversed(sa.sa))

elif updated_b.index(sa) % 2 != 0 and sa !=last_sa_in_b:

node_sequence += sa.sa

else:

last_pick = sa.picks[-1]

node_sequence += sa.sa[:last_pick.index+1]

Largest Gap

Like with the S-shape, we also first implemented a simplified version of the Largest

Gap heuristic. Each block in the warehouse is partitioned into front and back

half-blocks, which each contain either front or back subaisles. Here, routing is

standardized to be from right to left for the back half-block, and left to right for the

front half-block. In order words, the picker will pick all picks in the back subaisles



4.2. IMPLEMENTATION 49

from left to right, and then pick all picks in the front subaisles from right to left.

This is the case for every block in the warehouse. The following is a code snippet

of the key portion of our implementation that sequences the half-blocks together:

for b in partitioned_blocks:

if b:

curr_pos = node_sequence[-1]

lengths, shortest_paths =

shortest_path_to_all_nodes(curr_pos,

self.shortest_paths, self.G)

dist_to_leftmost_node = lengths[b[0][0]]

dist_to_rightmost_node = lengths[b[-1][0]]

if dist_to_leftmost_node > dist_to_rightmost_node:

reversed_b = list(reversed(b))

node_sequence += [node for sa in reversed_b

for node in sa]

else:

node_sequence += [node for sa in b for node in sa]

4.2.2 Optimal Routing

In our experiments, we first ran tests for Method 1 followed by Methods 2 and

3. Methods 2 and 3 uses the PyConcorde for optimal routing (after batching for

Method 2 and for both batching & picker routing after final assignment). A code

snippet of the optimal router which employs PyConcorde is as follows:

# creates lower triangular distance matrix for all nodes in H

distances =

self.make_lower_diag_string(nodes_in_H, distance_matrix)
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.

.

with os.fdopen(fd, ’w’) as output_file:

# The following is the formatting of the .tsp file

output_file.write("NAME : Concorde TSP Solver\n")

output_file.write("COMMENT : Solver for Method (ii)\n")

output_file.write("TYPE : TSP\n")

output_file.write("DIMENSION : %i \n" % len(nodes_in_H))

output_file.write("EDGE_WEIGHT_TYPE : EXPLICIT\n")

output_file.write("EDGE_WEIGHT_FORMAT : LOWER_DIAG_ROW\n")

output_file.write("EDGE_WEIGHT_SECTION\n")

output_file.write("%s \n" % distances)

output_file.write("EOF\n")

output_file.write(distances)

.

.

# map the vertex numbers back to the ones in G

node_sequence = [nodes_in_H[i] for i in solution.tour]

objective_value = solution.optimal_value

Another important function in each router class is the route function, which

executes the routing to pick all items in the order with a routing heuristic as

specified by the router class. A snippet of the function that applies to all four

routers is as follows:

def route(self, order):

start = 1 #depot

end = 1 #depot

.

.
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.

total_distance_traveled = 0

for node in node_sequence:

lengths, shortest_paths =

shortest_path_to_all_nodes(shortest_path[-1],

self.shortest_paths, self.G)

shortest_path += shortest_paths[node][1:]

total_distance_traveled += lengths[node]

route_with_distance =

namedtuple(’RouteAndDistance’,

[’shortest_path’, ’distance’])

route_tuple =

route_with_distance(shortest_path,

total_distance_traveled)

return route_tuple

In the route function, the node_sequence is the sequence of nodes to be

traveled by the picker, which begins and ends at the depot. The output of the

function is a namedtuple that stores the shortest path to pick all items in the order

and the total distance traveled by the picker.

4.2.3 Batching Heuristics

Time Savings

As we began our experiments with Method 1 which uses the TSH for batching of

orders, once we had a working version of the Nearest Neighbor router, we began
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working on the TSH. Recall that the TSH takes in a savings router and a batch

router as input. The TSH will first compute the savings by employing the savings

router in computing the routing estimates for each picker and their order. Once

all orders have been batched, the TSH will employ a batch router (which may be

different from the savings router depending on the method of solving) to compute

the route for each batch. A snippet of the TSH implementation in Python 3 with

key portions of the code highlighted is as follows:

def time_savings_heuristic(orders,savings_router,batch_router):

savings = calculate_savings(savings_router, orders)

sorted_savings = sort_savings(savings)

batches =

calculate_batches(savings_router, sorted_savings, orders)

.

.

for i in range(len(order_batches)):

order_batch_route = batch_router.route(order_batches[i])

route_traversed = order_batch_route.shortest_path

all_routes_traversed += [route_traversed]

distance_traveled = order_batch_route.dist

.

.

return tsh_results

4.2.4 Exact Solving

For solving the ILP formulation of the JOBPRP, we employed the Coin-or Branch

and Cut2 (CBC) solver (which is an open-source mixed integer programming solver
2See CBC documentation at: https://projects.coin-or.org/Cbc
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written in C++), and ran it with the MiniZinc3 formulation of the JOBPRP.

4.2.5 Input Preprocessing

Before the methods of solving with heuristics can be performed, much prepro-

cessing on the input data has to be done. This involves reading the raw order

file data, generating the warehouse parameters in Python 3, and also formatting

the warehouse parameters in a way such that they can be used as input for the

algorithms. One key stage is that of reading the warehouse parameters as input into

a function, which then creates subaisles that can be used efficiently by the various

heuristics.

When the warehouse has more than one block, partitioning the aisles into

subaisles becomes non-trivial as aisles may contain an odd number of pick locations,

and thus not every subaisle has the same number of pick locations. If the number

of pick locations per aisle is even, it follows that the number of pick locations per

subaisle is just the number of pick locations per aisle divided by the number of

blocks in the warehouse.

We implemented an algorithm that constructs the subaisles in each warehouse

instance in our experiments. Here we introduce new variables: aisles - a list

of aisles where each aisle itself is a list of nodes belonging to that aisle in the

warehouse, ca_nodes - the list of cross-aisle nodes of the warehouse and num_block

- the number of blocks in the warehouse. With the notations of the warehouse

parameters defined previously, we have the following pseudocode:

3MiniZinc is a free and open-source constraint modeling language. See
https://www.minizinc.org/.
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Algorithm 5: Input Preprocessing For Generating Subaisles
input :na, aisles, ca_nodes, nl, num_block

output :A list of subaisles

1 min_size_of_sa← b(nl/num_block)c

2 # initialize array containing initial sizes of subaisles

3 sa_sizes← [min_size_of_sa]× num_block

4 remaining_nodes← nl −min_size_of_sa× num_block

5 # add remaining nodes from left to right of sa_sizes, i.e. populate from sa

closest to depot

6 for i in range(remaining_nodes) do

7 sa_sizes[i]← sa_sizes[i] + 1

8 end for

9 ca_nodes_by_aisle← [ ]

10 for i in range(na) do

11 ca_nodes_by_aisle← ca_nodes_by_aisle[ca_nodes[j]

for j in range(i, length(ca_nodes), na)]

12 end for

13 subaisles← [ ]
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14 for i, aisle in enumerate(aisles) do

15 ca_pos← 0;

16 step = i ∗ (num_block + 1);

17 for j, size in enumerate(sa_sizes) do

18 subaisle = [ca_nodes_by_aisle[step+ j]] + aisle[ca_pos :

ca_pos+ size] + [ca_nodes_by_aisle[step+ j + 1]];

19 subaisles← subaisles+ [subaisle];

20 ca_pos← ca_pos+ size;

21 end for

22 end for

23 Return subaisles;

A snippet of our implementation of the above algorithm in Python 3 is as

follows:

def generate_subaisles(num_pick_loc_per_aisle, num_block,

aisles, cross_aisle_nodes):

min_size_of_sa = num_pick_loc_per_aisle // num_block

# initialize array containing initial sizes of subaisles

sa_sizes = [min_size_of_sa] * num_block

remaining_nodes = num_pick_loc_per_aisle

- min_size_of_sa * num_block

# add remaining nodes from left to right of sa_sizes,

#i.e. populate from sa closest to depot

for i in range(remaining_nodes):

sa_sizes[i] += 1
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ca_nodes_by_aisle = []

num_aisle = len(aisles)

for i in range(num_aisle):

ca_nodes_by_aisle += [cross_aisle_nodes[j] for j in

range(i, len(cross_aisle_nodes),

num_aisle)]

subaisles = []

for i, aisle in enumerate(aisles):

ca_pos = 0

step = i * (num_block + 1)

for j, size in enumerate(sa_sizes):

subaisle = [ ca_nodes_by_aisle[step+j] ]

+ aisle[ca_pos : ca_pos + size]

+ [ ca_nodes_by_aisle[step+j+1] ]

subaisles += [subaisle]

ca_pos += size

return subaisles

4.3 Warehouse & Order Instances

4.3.1 Warehouse Representation

According to [1], there is no information about warehouse layouts and product

placement in Foodmart, so the authors constructed a warehouse layout generator in

the Perl programming language to simulate both. The generator creates warehouses

which must be able to hold a minimum predetermined number of distinct products
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(np ) given a (fixed) number of aisles, cross-aisles and shelves. Arbitrary lengths in

meters for the widths of aisles, cross-aisles, rack depth and slots are given. The

distance from the depot s (origin) to its closest artificial vertex (which lies in the

cross-aisle closest to the depot) is also given.

The generator computes the number of slots a shelf must have in order to hold

at least the required number of products np, while minimizing the number of empty

slots. It also computes the position of cross-aisles such that aisles are divided in

subaisles as equally (in terms of number of slots) as possible. The placement of

products in slots is performed by sorting all products from the highest category

level to the lowest and placing them in consecutive slots, such that similar products

are close to each other.

In our experiments, we experimented on small and large instances of the

warehouse. For small warehouse instances, they consist of 2 to 8 aisles, 1 block

and 4 possible pick locations per aisle. For large warehouse instances, they consist

of 8 to 30 aisles, 1 to 4 blocks and 33 possible pick locations per aisle. We

standardized each shelf to hold 33 slots, so that each warehouse can store all

distinct products, enough for all 1560 products in the Foodmart database. This

condition is enforced by setting the number of shelves stacked vertically to 3. The

distance from the origin to the closest artificial vertex (directly in-front of depot) is

4m, the aisle and cross-aisle widths are 3m, and both the slot width and rack depth

are 1m.
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4.3.2 Test Instances

Orders

The authors in [1] noticed that orders are generally very small, and decided to

combine different Foodmart orders into a single one to produce larger orders. For

every customer, all of their purchases made in the first ∆ days are combined into a

single order. It is noted that the combined order may contain not only more distinct

products, but also a higher quantity of items of a single product.

A test instance is thus taken as the O orders with the highest number of distinct

products. If O = 8, the 8 largest combined orders make up the test set, and if

O = 9, we take the same orders as in O = 8 plus the ninth largest combined order.

In our experiments, each order file (test instance) was created from ∆ = {5, 10, 20}

and O = {5, . . . , 50}. All test instances are publicly available as mentioned in a

previous section.

The order instances data are publicly available from the MySQL Foodmart

Database: http://pentaho.dlpage.phi-integration.com/mondr

ian/mysql-foodmart-database and the warehouse generator (together

with some test instances as described in [1]) can be found at: https://ho

mepages.dcc.ufmg.br/~arbex/orderpicking.html. The database

consists of anonymised customer purchases over two years, across a chain of

supermarkets. In total, there are 1560 unique products classified into 4 categories.

In particular, it contains ≈ 270000 orders for the period 1997− 1998, where each

order has a customer ID, a list of distinct products purchased, and the number of

items for each distinct product and their purchase dates.

http://pentaho.dlpage.phi-integration.com/mondrian/mysql-foodmart-database
http://pentaho.dlpage.phi-integration.com/mondrian/mysql-foodmart-database
https://homepages.dcc.ufmg.br/~arbex/orderpicking.html
https://homepages.dcc.ufmg.br/~arbex/orderpicking.html
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Capacity of Baskets & Number of Pickers

The authors in [1] defined each basket to hold a maximum number of 40 items,

irrespective of their sizes and weights. For every test instance, they also defined

the number of available pickers to be T =
⌈∑

o∈O bo
B

+ 0.2
⌉

. They did not tackle

the problem of finding the exact minimum T required to service all orders as it is

an optimization problem on its own. Note that not all pickers need to be employed

to be used as the solution may not utilize every picker. In our experiments, we

experimented with various picker capacities c ∈ {80, 160, 240, 320}. For example,

a picker capacity of 160 corresponds to 4 baskets. We noted that varying picker

capacities yielded results which show a general trend (in increasing quality of

solution) which can be easily explained by the fact that larger capacities imply a

greater ability for orders to be combined and batched together and thus an overall

lower objective value (which leads to higher quality of solution). As such, we

decided to stick to a single picker capacity of 320, equivalently in [1] where the

authors set the number of baskets to 8.

Summary of Warehouse Parameters & Picker Capacities

The following table is a summary of all our input parameters for the warehouse

and picker capacity, and also that of the methods of solving employed:

Warehouse Capacity Methods Aisles Blocks Shelves Products ∆ O
Small 80, 160, 240, 320 1, 2, 3, Exact 2, 3, 4, 5, 6, 7, 8 1 3 1560 5, 10, 20 5, 6, . . . , 50
Large 320 1, 2, 3 2, 3, 4, 5, 6, 7, 8, 10, 20, 30 1, 2, 3, 4 3 1560 5, 10, 20 5, 6, . . . , 50

Table 4.1: Summary of warehouse parameters used for test cases in our experiments
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4.4 Experimental Setup

4.4.1 Setting Up A Workflow

Snakemake4, a workflow management system described in Python based language,

is used to run experiments locally on our PCs, and to submit jobs to the cluster in

NUS HPC. To be precise, all our experiments were ran by invoking Snakemake

rules in Bash. An example of a Snakemake rule from our experiments is as follows,

which runs a test for Method 1, with Nearest Neighbor as the router, an order

file with ∆ = 10, O = 10, a warehouse with 8 aisles, 2 blocks, 3 shelves, 1560

minimum number of products and a picker capacity of 320:

rule method1_nn_nn_d10ord10:

output:

"method1_d10ord10_nn_nn_8_1_3_1560.csv"

shell:

"python3 time_savings_heuristic.py "

"-g ../data/foodmart/warehouseGenerator.pl "

"-l ../data/foodmart/productsDB_1560_locations.txt "

"-o ../data/foodmart/order/instances_d10_ord10.txt "

"-csv {output} -c 320 -na 8 -nc 1 -ns 3 -np 1560 "

"-sr nn -br nn"

4.4.2 Running The Experiments

The main required libraries and packages in Python 3 are networkx, pandas,

matplotlib, scikit-learn, and seaborn. Using Python 3, we generate the warehouse

4See https://snakemake.readthedocs.io/en/stable/ for documentation.
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instances (warehouse_input_reader.py), employ the savings & routing heuristics

(time_savings_heuristic.py, NearestNeighborRouter.py, etc), and also employ the

PyConcorde solver (OptimalRouter.py) used in methods 2 & 3.

In the initial stages of the project, we performed experiments on the smallest

possible instance of the warehouse with 2 aisles, 1 block and 2 pick locations per

aisle in Python 3. These were performed with the TSH and Nearest Neighbor

heuristic, and we invoked the Snakemake rule that runs the shell command to

run the experiment. We also used Git5 for Windows to store results in Cosmiqo’s

GitLab account’s repository.

Before we began working on Methods 2 and 3, we installed a working version of

PyConcorde (a Python wrap-around the Concorde TSP solver) from https://gi

thub.com/jvkersch/pyconcorde and imported it into our implementation

of the optimal router. It was also installed in the HPC terminal so that we are

able to run experiments for Method 3, which can take very long to solve for large

warehouse instances.

At the same time, we also worked on invoking MiniZinc with Snakemake to

run experiments for exact solving. The JOBPRP with constraints (1)− (21) were

set up in MiniZinc by Joel - a previous student working on the project, and solved

to optimality with the CBC solver. With the MiniZinc driver on the environment

PATH variable in the system, we were able to perform exact solving on the ILP

formulation of the JOBPRP with CBC using the following Snakemake rule:

rule instances_d5_ord5_exact:

input:

"instances_d5_ord5.dzn"

5For more details about Git, see https://gitforwindows.org/

https://github.com/jvkersch/pyconcorde
https://github.com/jvkersch/pyconcorde
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output:

"instances_d5_ord5_exact.exact"

shell:

"minizinc --solver osicbc ../minizinc/valle2017.mzn "

"{input} --output-time > {output}"

In this Snakemake rule, the input file is the .dzn file that contains the picker

capacity, warehouse parameters and edges (with their weights). The file used in

this example corresponds to the order file with ∆ = O = 5. In the shell, the

CBC solver is invoked with the -solver osicbc flag, and the time elapsed for

solving is printed with the -output-time flag. The line > output results in

solver outputs being saved to the instances_d5_ord5_exact.exact file.

Experiments were initially conducted locally on our PCs via Ubuntu6 by in-

voking Make and Snakemake rule commands, which allows us to run batches of

jobs in one go. Throughout the project, we implemented other routing heuristics

in Python 3 and increased the size of the warehouse instances by increasing the

number of aisles and the number of pick locations per aisle, and also increased

the size of the orders. We noticed that the computation times grew as the size of

the warehouse and order instances increases. It eventually reached a point where

it took more than a day to run all experiments for all 138 order files for a large

warehouse instance. In particular, the solving times for each order and warehouse

instance for large warehouse instances were so large and memory consuming that

it became no longer feasible to run on our personal computers.

As the processing power of our computers are not sufficient in conducting

6Ubuntu is a free and open-source Linux distribution based on Debian. For more details, see
https://www.ubuntu.com/
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the tests (especially for solving large instances to optimality and for Method 3),

we eventually reached out to the university’s Information Technology’s High-

Performance Computing7 (HPC) center, where it became possible to submit jobs

to the cluster (using Snakemake) for running of these experiments. This was done

by submitting a job script via the Snakemake rule:

rule submit_job:

shell:

"python3 -m snakemake --cluster qsub -j 30 "

"--jobscript js.txt all_exact"

where the -j 30 option limits the number of concurrently submitted jobs to the

cluster at 30, the job script submitted is js.txt and the Snakemake rule to run

which contains the experiment(s) is all_exact. An example of the job script

we used for submission is as follows:

#!/bin/bash

## -P Exact_HPCTMP: Job project name

#PBS -P Exact_HPCTMP

## -q Queue_Name: which queue to sbmit the job to in HPC

## Note: parallel12 has wall time of 720 hours.

#PBS -q parallel12

## -l reserves 1 units of 1 cpus, 5GB memory for this job

#PBS -l select=1:ncpus=12:mem=5GB

## -j oe states to join output and error files together

#PBS -j oe

## -N Exact_Solving_Job_Output: set filename for standard output/error message.

7See https://nusit.nus.edu.sg/services/hpc/about-hpc/
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#PBS -N Exact_HPCTMP_Job_Output

## Change to the working dir in the exec host

cd $PBS_O_WORKDIR;

##--- Put your exec/application commands below ---

## source /etc/profile.d/rec_modules.sh gets path where modules are installed

source /etc/profile.d/rec_modules.sh

module load python3.6.4

## permanently have MiniZinc driver on environment PATH in HPC

export PATH="$PATH:/home/svu/e0004335/minizinc/bin"

## exec_job is where snakemake inserts the command

{exec_job}

4.4.3 Data Analysis

Plotting of picker paths was done in Python 3, with the aid of the matplotlib8 library

alongside the networkx library. Statistical visualizations such as box plots were

created with the import of the seaborn9 library. We created box plots to compare

the scalability of the warehouse, the impact of partitioning the warehouse into

multiple blocks on the objective value, and also to gather deeper and more direct

insights on the difference in methods for recommendation purposes.

4.4.4 Problems Encountered & Improvements Made

Most of the problems we encountered throughout the duration of the project

is during the configuration of the HPC software and terminal, in order for our

experiments to run correctly in the HPC system. During our first few weeks of

configuring the terminal, we encountered various problems such as an outdated

8See documentation at: https://matplotlib.org/
9See documentation at: https://seaborn.pydata.org/
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kernel in HPC when running exact solving with CBC in MiniZinc. As a result,

the MiniZinc bundle had to be rebuilt on an older kernel for it to run in HPC.

Other (minor) problems encountered were missing packages in the HPC system

for Python 3, and Git Large File Storage (LFS) was also missing. This resulted

in file transfers being done manually over a secure SSH client such as Filezilla.

Another somewhat significant problem faced was the lack of memory for exact

solving with CBC in HPC. Initially, the number of pickers available was preset to

40, which was well-beyond the minimum number of pickers required to pick all

items in each order, across all order and warehouse instances. A large number of

available pickers does increase the solver search time significantly as it directly

affects several constraints in the ILP formulation of the JOBPRP, by increasing

the search space of the solving algorithm. We eventually reached a solution to

this by first computing the minimum number of pickers required from the results

of experiments for Methods 1 to 3, and then exported the number of pickers to

the .dzn file which contains the required variables and parameters used in exact

solving. As a result, solving times and memory usage in the terminal were greatly

reduced.
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5
Results

5.1 Overview & Preliminaries

In our experiments, we employ 2 methods of solving - exact and heuristic solving.

For exact solving, we employ the ILP formulation of the JOBPRP with constraints

(1) − (21) in MiniZinc, and utilize the CBC solver to solve to optimality. For

heuristic solving, we employ Methods 1 - 3 as described in Chapter 3. We also

computed the results for when no batching heuristic was used, which we denote as

trivial batching where each order is assigned to a picker and routing is solved with

PyConcorde for each picker. To compare the result of using a batching heuristic

and without (trivial batching), we compute the quality of solution when a batching

heuristic is used with the following formula:

67
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Definition 5.1.1. For each Method 1, 2 & 3, we have

quality of solution =
total distance without batching− objective value

total distance without batching
(22)

where the total distance without batching is computed with only the routing heuris-

tic (which is the trivial batching objective value, and the best routing heuristic

was used - Optimal solver), and the objective value is the heuristic solution of the

JOBPRP obtained by the respective Methods 1, 2 & 3.

Remark. A positive (resp. negative) quality of solution value indicates that there

is a reduction (resp. increase) in objective value when a batching heuristic is used.

Example 5.1.1. Using the same warehouse instance generated for Example 3.3.1,

we have the optimal distance traveled (in meters) by each picker for each order

o (without batching) to be of the form d
(opt)
o , o = 1, 2, . . . , 7, where d(opt)1 =

81, d
(opt)
2 = 87, d

(opt)
3 = 81, d

(opt)
4 = 78, d

(opt)
5 = 73, d

(opt)
6 = 88, d

(opt)
7 = 9. Thus

total distance without batching =
7∑
o=1

d(opt)o = 497

Recall from Example 3.3.1 that the result of batching orders with TSH and S-shape

as the router is {{3, 5}, {4, 6}, {2, 7}, {1}}. Then

objective value = d35 + d46 + d27 + d1 = 108 + 108 + 108 + 89 = 413

and consequently quality of solution = 497−413
497

= 0.1690.
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5.2 Results For Each Warehouse Instance & Method

5.2.1 Exact Solving

Initially we submitted the job script to NUS HPC to solve the JOBPRP with

constraints (1)− (21) for large warehouse instances using the CBC solver, for all

order instances in increments of 5 (i.e. orders of sizes 5, 10, . . . , 50) with picker

capacity 320, and number of pickers available to be 40 (as the highest number

of pickers required from Methods 1 - 3 is 27). We removed the time allowed for

the solver to run, and noted that the runtime of each job (for solving JOBPRP to

optimality for each order instance) was limited to 720 hours, which is the wall-time

of the job in HPC’s parallel12 queue. We utilized 1 unit of cpu, 32GB memory for

this job.

However every job, even after 240 hours, did not attain even a suboptimal

solution. This is beyond the practicalities of actual usage in the industry as in

actual practice, it should not take too long for orders to be batched and picked as it

will delay the delivery process to the customer.

We decided to limit the solver runtime to 1 hour for small warehouse instances

and set the number of available pickers to the number computed from Method 2

with S-shape. This results in a lower upper bound in the number of pickers required,

and reduces the search space in exact solving. In this case, some solutions were

obtained, but for larger order instances, the runtime went beyond an hour so no

solution was obtained. Thus, for the large warehouse instances existing results

for complete optimal solving in [1] can be used for comparison instead, and we

only show exact solving results for small warehouse instances with sufficient data
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points for analysis and focus on analyzing the results for heuristic solving with

Methods 1 to 3.

Figure 5.1: Exact solving results for small warehouse instances with 2 & 3 aisles

For exact solving, we were only able to obtain results with sufficient data points

for small warehouse instances with 2 and 3 aisles. From the plots of their quality

of solution, we observed that as the number of aisles increases, the gap between

the median quality of solution for exact solving and heuristic solving with Methods

2 and 3 increases. No other generalizations can be made from the results obtained

at the moment.

5.2.2 Heuristic Solving (Large Instances)

From the results obtained from heuristic solving with Methods 1 to 3, we made

some general observations across all large warehouse instances, the first being

that Method 1 Nearest Neighbor is the fastest (with lowest median time) across

all blocks. This is not highly unusual, as in our implementation of the Nearest
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Neighbor router, there was no sequence of nodes (node_sequence) to visit

which contained several other nodes that are not pick nodes (like in S-shape and

Largest Gap routers). This reduced the need for extensive computation of shortest

paths, hence resulting in a significantly lower time to compute routes. The Nearest

Neighbor router in Method 1 also resulted in the best (lowest) median objective

value across all the other routers used in Method 1, except for 3 out of 16 results

for Method 1. Note that the Nearest Neighbor heuristic is not used in practice in

general, as actual aisles can be very narrow and it does not make sense for the

picker to perform a u-turn in that narrow aisle, especially when the picker has a

cart with them to store picks.

Another important observation is that across all large warehouse instances and

across all blocks, Method 2 (with its resp. routers) has a lower median objective

value than Method 1 (with its resp. routers). This result is in line with the fact that

using an optimal router instead of a routing heuristic for routing of pickers should

give a objective value less than or equal to that of the routing heuristic. Thus,

we decided to analyze only results from Methods without the Nearest Neighbor

heuristic as a router, and excluded Method 1 from our analysis as its results were

poorer than Methods 2 and 3.

To gain deeper insights on the results obtained for the total distance traveled by

the pickers, we plotted the box plots of quality of solution against the method of

solving used for each large warehouse instance and for 320 picker capacity. The

box plots are of the form:
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Figure 5.2: Boxplot for Methods 2 and 3 of solving for quality of solution, for the
warehouse instance with 8 aisles & 4 blocks

One interesting yet perplexing observation we made was that there are methods

with a higher median quality of solution and lower spread than Method 3. An

example can be found in Figure 5.2 above, where Method 3 has a lower median

quality of solution than Method 2 with S-shape and Largest Gap router. This result

is counter-intuitive as a natural thought will be that Method 3, having both savings

and batch router to be optimal routers, should yield a higher quality of solution than

all methods that employ routing heuristics in solving. Our interpretation of this

result is that using a routing heuristic instead of an optimal router as savings router

can result in batching being performed in such a way that the overall objective

value will be lower than in the case where an optimal router is used as savings

router.

To gain a deeper insight as to what happened during the batching for Methods

2 and 3, we plotted the batches and routes for the test instance with ∆ = 5, O = 10
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which had Method 2 with a higher quality of solution than Method 3. The following

is an example of one such test instance with 10 orders where Method 2 with S-shape

has a higher quality of solution than Method 3.

Figure 5.3: Pick locations for each order (by color) before batching

Figure 5.4: Pick locations for each order
(by color) after batching for Method 2

Figure 5.5: Pick locations for each order
(by color) after batching for Method 3

In this test instance with ∆ = 5, O = 10, we observed that for an input with

10 orders, Method 2 S-shape produced 1 batched order as output whereas Method

3 produced 2 batched orders as output. Furthermore, when these batched orders

have been routed with the respective batch routers, the total distance traveled by

the pickers across all the routed batched orders in Method 3 is more than that of

Method 2 S-shape. The following plots in Figures 5.6, 5.7 and 5.8 illustrates this.
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Figure 5.6: Method 2’s batched order route

Figure 5.7: Method 3’s first batched or-
der route

Figure 5.8: Method 3’s second batched
order route

At this stage, we are not able to draw anything conclusive, so we decided to look

into the critical point in the batching process where a new batch was formed for

Method 3. Denote the orders by their indices from 1 to 10. Then we obtained the

batched orders - for Method 2 S-shape: Batches = {{3, 4, 1, 5, 9, 10, 2, 6, 8, 7}}

and Method 3: Batches = {{3, 4, 1, 2, 8, 7}, {5, 10, 6, 9}}. Next, we computed the

savings matrix for Method 2 S-shape and Method 3:
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Order i 1 2 3 4 5 6 7 8 9 10
1 -
2 146.69 -
3 156.47 156.26 -
4 174.69 150.69 192.26 -
5 173.09 130.69 152.47 154.69 -
6 151.09 112.31 106.37 142.31 124.99 -
7 100.9 86.69 100.47 100.69 86.9 72.52 -
8 124.47 108.41 136.47 148.41 124.47 112.37 68.47 -
9 147.09 128.69 140.47 144.69 165.09 124.71 92.9 116.47 -

10 140.9 124.69 136.47 132.69 156.9 140.8 96.9 100.47 132.9 -

Table 5.1: Method 2 S-shape Savings Matrix

Order i 1 2 3 4 5 6 7 8 9 10
1 -
2 96.8 -
3 128.47 130.47 -
4 142.42 112.8 144.37 -
5 126.71 94.52 110.47 114.52 -
6 112.71 92.71 92.52 104.42 100.71 -
7 100.31 78.59 88.41 108.59 100.41 84.31 -
8 104.47 92.47 118.47 126.47 100.47 104.37 88.41 -
9 124.71 90.52 112.47 112.52 124.81 120.43 92.69 90.19 -

10 126.47 110.37 122.47 120.47 132.47 128.71 92.26 112.47 124.19 -

Table 5.2: Method 3 Savings Matrix

So what happened during the batching? To find out more, we computed the

steps of the batching, where we found that order 5 does not get added to the first

batch of orders at the third step:

Step 1 : {{3, 4}}

Step 2 : {{3, 4, 1}}

Step 3 : {{3, 4, 1, 5}}

Steps of Method 2’s batching

Step 1 : {{3, 4}}

Step 2 : {{3, 4, 1}}

Step 3 : {{3, 4, 1}, {5, 10}}

Steps of Method 3’s batching
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To analyze this critical step deeper, we refer to the savings matrix for Method 3:

Order i 1 2 3 4 5 6 7 8 9 10
1 -
2 96.8 -
3 128.47 130.47 -
4 142.42 112.8 144.37 -
5 126.71 94.52 110.47 114.52 -
6 112.71 92.71 92.52 104.42 100.71 -
7 100.31 78.59 88.41 108.59 100.41 84.31 -
8 104.47 92.47 118.47 126.47 100.47 104.37 88.41 -
9 124.71 90.52 112.47 112.52 124.81 120.43 92.69 90.19 -

10 126.47 110.37 122.47 120.47 132.47 128.71 92.26 112.47 124.19 -

Table 5.3: Method 3 Savings Matrix With Highlighted Key Savings

In the third step for Method 3, we observed that order pair (5, 10) had a higher

savings than (1, 5) in the third step, i.e. s5,10 = 132.47 ≥ 126.71 = s1,5. On the

contrary for Method 2 S-shape, it can be seen from Table 5.1 that order pair (5, 10)

had a lower savings than (1, 5). As a result, a new batch is formed for order pair

(5, 10) in step 3 for Method 3, which ultimately lead to a higher total distance

traveled for Method 3.

We also computed the median time elapsed for each method of solving, by

combining all same methods of solving with the S-shape and Largest Gap routers

together. For e.g., we analyzed the results of Method 1 with S-shape, Largest Gap

for the savings router together. We obtained the following plot as a result:
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Figure 5.9: Plot of Median Time Elapsed in seconds across all large warehouse
instances for 320 picker capacity

Another important yet surprising finding in our experimental results is that the

median time taken for Method 3’s solving is the lowest for warehouses with 20 and

30 aisles as compared to 8 and 10 aisles. At this point in time, we are not able to

explain why that is the case for Method 3, but it may be possible that the number

of aisles also had a role in influencing the batching process (besides the savings

router which differs across methods).

We also looked into how large an impact varying the number of blocks of each

warehouse instance has on the median total distance traveled. Like with the case

for median time elapsed, we analyzed each method of solving as a whole, across

all the savings routers.
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Figure 5.10: Plot of Median Total Distance Travelled across all number of blocks
for a warehouse with 10 aisles and 320 picker capacity

From the results collected, we observed no clear result across Methods 2 and 3

when the number of blocks for each warehouse instance was varied. Increasing the

number of blocks does not lead to a consistent increase (resp. decrease) in median

total distance traveled. An interesting observation we made is that there are several

warehouse instances having Method 2 (with either S-shape or Largest Gap router)

produce a solution with a lower median total distance traveled than Method 3. An

example can be found in Figure 5.10 above, where Method 2 with S-shape router

produced a lower median total distance traveled than Method 3 across all blocks

for a warehouse with 10 aisles.

Recommendations on the ’best’ method of solving for each warehouse instance

with varying number of blocks will be made in a subsequent section.
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5.3 Recommendations

In this section, we present our answers to the two main questions in the thesis.

From our results, one clear result is that Method 1 (regardless of routing heuristic)

had the worst median quality of solution. However, its median computation time

was the smallest among all the Methods for warehouses with 1 block, with the

same routing heuristic in Methods 1 and 2. Method 2 (with S-shape or Largest

Gap) had the best quality of solution versus time trade-off across all warehouse

instances. Method 3 also has a very good quality of solution versus time trade-off,

as it has consistent results in median time elapsed and high quality of solution for

most instances. Method 2 with S-shape and Largest Gap as savings routers on the

other hand also show similar results for quality of solution like in Figure 5.2 and

also median time elapsed across most warehouse instances. However, all methods

of solving involving S-shape and Largest Gap routers (batch and/or savings) have

large computation times, which become relatively large as the number of aisles in

the warehouse increases.

Finally, we come to the second and last question - If I have a warehouse with

X aisles and Y cross-aisles and a number of orders to batch, what method should

be used to solve the problem within the time limit? Reinforcing our findings for

the quality of solution above with the tables in the appendix where methods with

the lowest median objective values are highlighted in red, we have the following

recommendations.

We first make a remark that the number of blocks in the warehouse is equal

to Y cross-aisles −1. At this stage, if computation time is the primary concern

(regardless of objective value), then the best method for all warehouse instances



80 CHAPTER 5. RESULTS

will be a warehouse with 1 block, and Method 1 with any routing heuristic (S-shape

or Largest Gap) as their median computation time differs by at most 5 seconds

across all warehouse instances. If objective value is the primary concern, then the

recommended methods based on our results can be found in the table below:

Aisles Blocks Recommended Method

8 1 Method 3

8 2 Method 3

8 3 Method 2 Largest Gap

8 4 Method 2 Largest Gap

10 1 Method 2 Largest Gap

10 2 Method 2 S-shape

10 3 Method 2 S-shape

10 4 Method 2 S-shape

20 1 Method 2 Largest Gap

20 2 Method 2 Largest Gap

20 3 Method 3

20 4 Method 2 S-shape

30 1 Method 2 Largest Gap

30 2 Method 2 S-shape

30 3 Method 3

30 4 Method 2 S-shape
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5.4 Conclusion

In this thesis, we investigated the heuristic methods of order batching and picker

routing in a simulated warehouse environment to answer the two main questions

in our business problem. We implemented a batching heuristic (TSH) and four

routers - Nearest Neighbor, S-shape, Largest Gap and Optimal. We demonstrated

the benefits of the different methods of heuristic solving for the JOBPRP, where we

contrasted the trade-offs between quality of solution and computation time as an

answer to the first question, and showed that Method 2 is predominantly the most

recommended method as an answer to the second question. We also showed that

Method 3 is not always the method of solving with the highest quality of solution,

which is counter-intuitive.

5.5 Future Work

Due to the time constraint of the project, we were only able to implement one

batching heuristic to address order batching. For our next step, we will be looking

into developing a new batching heuristic, which formulates batching as a covering

problem (like a vertex cover), but with intervals which are subsets of the routes (i.e.

first and last pick locations that lie on the pick path) containing the original order.

A rough outline of the heuristic with a running example is as follows:

1. Given a list of orders, e.g. O = {{2, 3, 7}, {4, 4, 6}, {9}, {5, 7, 8, 8, 8}}, first

combine all orders into one merged order: O′ = {2, 3, 4, 4, 5, 6, 7, 7, 8, 8, 8, 9}.

2. Perform optimal routing on O′ (with PyConcorde), which gives us a sorted
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sequence of items/locations.

3. Each original order can now be considered to span a certain interval along

the routing of the merged order, i.e. represented by an interval [i, j].

4. Batch intervals, starting with one with the greatest overlap. The intuition

being that two order intervals overlap if items are being picked together in

the merged order.

We also noticed that the run-time for Methods 1 to 3 for S-shape and Largest

Gap were still much longer than the time elapsed for similar methods employed in

solving in [1]. We aim to improve the run-time by first reducing the need for the

shortest paths to all nodes to be computed in the route function in the routers.

Currently, the shortest path and its distance for each picker is being computed by

finding the shortest path between consecutive nodes in node_sequence, which

is a sequence of nodes to be traversed. Note that due to the nature of some routers,

the nodes in node_sequence may not be in sequence. As a next step, we will

be looking into the routing heuristics to see where more information can be given

such that more nodes can be appended to sequence in sequence. Once all nodes

are in sequence, we can simply employ a function get_distance which returns

the distance between consecutive nodes, by extracting the edge weight from the

graph G which was initially set up and already contains all the weighted edges in

the warehouse. The function can be implemented as follows:

def get_distance(route, G):

return sum([G[s][t][’weight’] for s, t in zip(route, route[1

:])])
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A
Appendix

A.1 Heuristic Solving Results For Large Instances

The tables in this section are the results of Methods 1 to 3 showing the median

time taken to get the solution, and also the median objective value, for different

routers (S-shape, Largest Gap, Optimal). We highlighted the smallest median

time and objective value amongst the methods for each warehouse instance in red.

Results for Methods which used Nearest Neighbor as the router are not shown as

the heuristic is not used in practice due to practical reasons described in Chapter 5.
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Table A.1: Results for warehouses with 8 aisles, 1 to 4 blocks.

Median Time Median Objective Value
Method 1 S-shape 11.35 1413.36
Method 1 L-Gap 11.57 1828.92

Method 2 S-shape 12.85 1393.38
Method 2 L-Gap 13.14 1428.79

Method 3 34.2 1392.84

(a) 1 Block

Median Time Median Objective Value
Method 1 S-shape 20.19 1541.17
Method 1 L-Gap 19.84 1853.62

Method 2 S-shape 22.32 1442.41
Method 2 L-Gap 23.16 1382.62

Method 3 31.75 1374.62

(b) 2 Blocks

Median Time Median Objective Value
Method 1 S-shape 29.69 1622.77
Method 1 L-Gap 28.34 1685.52

Method 2 S-shape 34.99 1343.69
Method 2 L-Gap 35.69 1235.17

Method 3 29.77 1309.26

(c) 3 Blocks

Median Time Median Objective Value
Method 1 S-shape 38.37 1584.11
Method 1 L-Gap 36.7 1810.31

Method 2 S-shape 40.6 1307.17
Method 2 L-Gap 42.0 1235.08

Method 3 29.55 1488.98

(d) 4 Blocks
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Table A.2: Results for warehouses with 10 aisles, 1 to 4 blocks.

Median Time Median Objective Value
Method 1 S-shape 13.1 1530.28
Method 1 L-Gap 13.71 1762.89

Method 2 S-shape 16.96 1494.08
Method 2 L-Gap 15.85 1432.08

Method 3 44.14 1501.82

(a) 1 Block

Median Time Median Objective Value
Method 1 S-shape 24.54 1231.27
Method 1 L-Gap 24.11 1992.94

Method 2 S-shape 29.93 1199.85
Method 2 L-Gap 28.59 1534.53

Method 3 39.27 1311.79

(b) 2 Blocks

Median Time Median Objective Value
Method 1 S-shape 35.9 1646.7
Method 1 L-Gap 33.59 1975.24

Method 2 S-shape 37.89 1289.51
Method 2 L-Gap 46.67 1371.89

Method 3 31.2 1415.39

(c) 3 Blocks

Median Time Median Objective Value
Method 1 S-shape 46.31 1582.81
Method 1 L-Gap 45.43 2319.65

Method 2 S-shape 51.38 1305.51
Method 2 L-Gap 48.97 1541.12

Method 3 30.46 1518.32

(d) 4 Blocks
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Table A.3: Results for warehouses with 20 aisles, 1 to 4 blocks.

Median Time Median Objective Value
Method 1 S-shape 23.65 1798.22
Method 1 L-Gap 24.02 1836.94

Method 2 S-shape 28.87 1715.45
Method 2 L-Gap 31.86 1657.33

Method 3 44.18 1828.91

(a) 1 Block

Median Time Median Objective Value
Method 1 S-shape 45.86 1965.17
Method 1 L-Gap 45.24 2326.09

Method 2 S-shape 53.67 1819.23
Method 2 L-Gap 48.94 1619.94

Method 3 43.28 1690.73

(b) 2 Blocks

Median Time Median Objective Value
Method 1 S-shape 68.97 2565.05
Method 1 L-Gap 67.17 2900.35

Method 2 S-shape 72.79 1838.04
Method 2 L-Gap 69.7 1755.7

Method 3 39.79 1572.88

(c) 3 Blocks

Median Time Median Objective Value
Method 1 S-shape 88.5 2069.98
Method 1 L-Gap 87.43 3380.06

Method 2 S-shape 95.5 1494.04
Method 2 L-Gap 91.82 1807.75

Method 3 38.43 1767.76

(d) 4 Blocks
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Table A.4: Results for warehouses with 30 aisles, 1 to 4 blocks.

Median Time Median Objective Value
Method 1 S-shape 35.65 2202.18
Method 1 L-Gap 35.08 1925.62

Method 2 S-shape 38.55 2073.26
Method 2 L-Gap 43.29 1803.82

Method 3 42.03 1950.79

(a) 1 Block

Median Time Median Objective Value
Method 1 S-shape 67.15 1939.31
Method 1 L-Gap 67.04 2779.71

Method 2 S-shape 72.92 1797.22
Method 2 L-Gap 73.43 1953.58

Method 3 47.83 2129.55

(b) 2 Blocks

Median Time Median Objective Value
Method 1 S-shape 101.64 2994.09
Method 1 L-Gap 98.78 3560.48

Method 2 S-shape 104.52 2061.69
Method 2 L-Gap 105.72 2021.51

Method 3 44.88 1932.47

(c) 3 Blocks

Median Time Median Objective Value
Method 1 S-shape 133.35 2741.11
Method 1 L-Gap 128.82 4338.02

Method 2 S-shape 133.01 1937.99
Method 2 L-Gap 135.99 2071.48

Method 3 45.29 2037.7

(d) 4 Blocks
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