
Burrows Wheeler Transformation and its
Applications

Khoong Wei Hao

Department of Mathematics
National University of Singapore

July 28, 2017

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

1 Introduction
History
Data Compression

Lossy Compression
Lossless Compression

Suffix, Suffix Array, and Suffix Trees

2 The Burrows Wheeler Transform
The Reversible Transformation
Effectiveness of the String Compression
An Efficient Implementation
FM Index

Backwards Matching

3 Applications of the Burrows Wheeler Transform
Implementation of the Transform
Performance of the Implementation

Compression for Binary Data
Compression for Letter-Based Texts

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

4 De Bruijn Sequences in the BWT
Preliminaries
De Bruijn Graphs
De Bruijn Sequences in the Inverse BWT

5 Variants of the Burrows Wheeler Transform
Bijective Variant of the BWT

6 Conclusion
Selected References

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

History of the Burrows Wheeler Transform (BWT)

The Burrows-Wheeler Transform was invented by Michael Burrows
and David Wheeler in 1994, while Burrows was working at DEC
Systems Research Center in Palo Alto, California. The algorithm is
based on a once unpublished work by David Wheeler in 1983, while
he was working at AT&T Bell Laboratories.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Lossy Compression

In data compression, lossy compression involves permanently
eliminating certain information in the data file, especially
redundant information, to reduce the file size when compressed.

When the file is decompressed, only a portion of the original
information will be present, although the difference from the
original is not entirely noticeable.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Lossless Compression

Lossless compression methods allow the original data to be
reconstructed from the compressed data exactly. In other words,
lossless compression reduces the file size without degrading the
quality of the original data (i.e. images).

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Suffix, Suffix Array, and Suffix Trees I

Definition 1.3.1.

An alphabet is denoted by
∑

, a finite set of characters or symbols.

Definition 1.3.2.

A string is a finite sequence of character or symbols from an
alphabet

∑
, enclosed by quotes ‘ ’ or “ ”. Denote

∑∗ as the set
of all possible strings over an alphabet

∑
.

Example

Given
∑

= {a, b}, we have the finite set
∑∗ ={‘ ’, ‘a’, ‘b’, ‘aa’,

‘ab’, ‘ba’, ‘bb’, ‘aaa’, . . . }, and any element of
∑∗ is a possible

string.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Suffix, Suffix Array, and Suffix Trees II

Definition 1.3.3.

A substring of a string T is a string T ′ that is a sequence of
consecutive characters from T . A proper substring of T is any
substring S , such that S 6= T .

Example

For example, ‘hello’ is a substring of ‘hello world’.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Suffix, Suffix Array, and Suffix Trees III

Definition 1.3.4.

A prefix of a string T is a substring of T that begins with the first
character of T . Formally, S̃ is a prefix of T ⇐⇒ ∃V ∈

∑∗ such
that T = S̃V . A proper prefix of T is not equal to T .

Definition 1.3.5.

A suffix of a string T is any substring of T that includes the last
character. Formally, a string S is a suffix of T ⇐⇒ ∃V ∈

∑∗
such that T = VS . A proper suffix of T is not equal to T
(i .e

∑∗ 6= ∅).

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Suffix, Suffix Array, and Suffix Trees IV

Definition 1.3.6.

Let T = T [0]T [1] . . .T [n − 1] be a string of n characters, and let
T [i,j] denote the substring of T ranging from i to j. We define the
suffix array SAT of T to be the array of integers [0, n − 1] that
contains the starting positions of suffixes in lexicographical order,
where SAT [i] contains the starting position of the i-th smallest
suffix in T , and T [SAT [i − 1], n] ≤ T [SAT [i], n] ∀ 0<i ≤ n − 1.

Definition 1.3.8.

A string t is a cyclic rotation (or conjugate) of a string s if
t[0..n − 1] = s[i ..n − 1]s[0..i − 1] for some 0 ≤ i ≤ n − 1.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

The Burrows Wheeler Transform I

Algorithm A - Burrows-Wheeler Transform (BWT)

Let T be an input string of n characters T [0],T [1], . . . ,T [n − 1]
selected from an ordered alphabet

∑
of the characters. We

illustrate the method by an example as follows: Let T=‘abraca’ be
a string, where n = 6 and alphabet

∑
= {‘a’,‘b’,‘c’,‘r’}. For

example, we have for n = 6, T [0] = ‘a’, T [1] = ‘b’, T [2] = ‘r’,
T [3] = ‘a’, T [4] = ‘c’, T [5] = ‘a’. Next, we construct n = 6
strings (rotations) S0, S1, . . . , S5(= Sn−1) such that

S0 = T [0] . . .T [n − 1] = ‘abraca’
S1 = T [1] . . .T [n − 1]T [0] = ‘bracaa’

S2 = T [2] . . .T [n − 1]T [0]T [1] = ‘racaab’
. . .

S5 = T [n − 1]T [0] . . .T [n − 2] = ‘aabrac’ .

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

The Burrows Wheeler Transform II

Algorithm A (Continued)

The next step is to sort S0, . . . ,S5(= Sn−1) lexicographically. So
from the string T , we have the sorted rotations:

S5 = ‘aabrac’
S0 = ‘abraca’
S3 = ‘acaabr’
S1 = ‘bracaa’
S4 = ‘caabra’
S2 = ‘racaab’

Note that at least one of the strings Si , 0 ≤ i ≤ 5(= n − 1)
contains the original string T . The above outputs from the sorted
rotations can also be represented by a n × n matrix M, whose
elements are the characters T [0],T [1], . . . ,T [n − 1], and rows are
the rotations (cyclic shifts) of T , sorted in a lexicographical order.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

The Burrows Wheeler Transform III

Algorithm A (Continued)

Denote I as the index of the first row of matrix M that contains
the original string S . In this example, index I = 1, and matrix M
given by

Let L be the output string of the transform which consists of the
last character in each of the rotations in their sorted order. For
e.g., L is the last column of M, and
L[0] = M[0, n−1], L[1] = M[1, n−1], . . . , L[n−1] = M[n−1, n−1].
The output of the transform is the ordered pair (L, I). Here, we
have L = ‘caraab’ and I = 1.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

T-ranking I

Definition 2.1.1. (T-ranking)

Give each character in T a rank, equal to the number of times the
character occurred previously in T .

Example

Let T=‘abraca’, and we re-write it as ‘a0b0r0a1c0a2’. Re-writing
matrix M, we have

M =



a2 a0 b0 r0 a1 c0
a0 b0 r0 a1 c0 a2
a1 c0 a2 a0 b0 r0
b0 r0 a1 c0 a2 a0
c0 a2 a0 b0 r0 a1
r0 a1 c0 a2 a0 b0

 (?)

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

LF Mapping

Definition 2.1.2. (LF Mapping)

Let L and F denote the last and first columns of the matrix M
obtained by Algorithm A respectively. Then the i th occurrence of a
character c in L and the i th occurrence of c in F corresponds to
the same occurrence in the original string T .

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Algorithm B - Reverse Transform I

Algorithm B - Reverse Transform

Let L be the string consisting of the last characters of the sorted
rotations S0, . . . ,Sn−1 and I , which denotes the position of
position of S0 in L. The reverse transform will yield the original
string T , of length n.

Firstly, we find the first character of each rotation Si . Let F be the
first column of the matrix M in Algorithm A, where as in Figure
2.1, we define M to be:

M =



a a b r a c
a b r a c a
a c a a b r
b r a c a a
c a a b r a
r a c a a b


Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Algorithm B - Reverse Transform II

Algorithm B (Continued)

To get F , we sort the characters of L. From the example in
Algorithm A and matrix M above, we have F = ‘aaabcr’.

Next, given F and L, we need to determine which character should
come after a certain character in F .

To help us determine the order of the characters above, we first
re-write M where each character in T=‘abraca’ has a rank, where
we re-write it as ‘a0b0r0a1c0a2’.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Algorithm B - Reverse Transform III

Algorithm B (Continued)

Re-writing matrix M, we have

M =



a2 a0 b0 r0 a1 c0
a0 b0 r0 a1 c0 a2
a1 c0 a2 a0 b0 r0
b0 r0 a1 c0 a2 a0
c0 a2 a0 b0 r0 a1
r0 a1 c0 a2 a0 b0

 (?)

Looking down columns F and L, we observe that the the ai ’s occur
in the order: a2, a0, a1. In fact, this holds true for any other
character. This is a case of last-to-first column (LF) mapping.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Algorithm B - Reverse Transform IV

Algorithm B (Continued)

Now, let M ′ be the matrix obtained by rotating all the rows of M
one character to the right, such that for each i = 0, . . . , n − 1, and
each j = 0, . . . , n − 1,

M ′[i , j] = M[i , (j − 1) mod n],
where the first column of M ′ equals to the last column of M. For
example, from (?), we have

M ′ =



c0 a2 a0 b0 r0 a1
a2 a0 b0 r0 a1 c0
r0 a1 c0 a2 a0 b0
a0 b0 r0 a1 c0 a2
a1 c0 a2 a0 b0 r0
b0 r0 a1 c0 a2 a0

 (??)

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Algorithm B - Reverse Transform V

Algorithm B (Continued)

Now, using F and L, the first columns of matrices M and M ′

respectively, we compute a vector V (an array in a programming
context) such that row j of M ′ corresponds to row V [j] of M.

Note that in Algorithm A, index I is defined in a way that row I of
M is the original string T . Hence, the last character of T is L[I].

Next, we use V to derive the predecessors of each character by
using T [n − 1− i] = L[T i [I]] for each i = 0, . . . , n − 1, where
V 0[y] = y , and V i+1[y] = V [V i [y]]. From this, we get T , the
original input string for the compression transform.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Algorithm B - Reverse Transform VI

Figure: Reverse BWT starting at the right-hand-side of T and moving left

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Effectiveness of the String Compression I

Consider the string ‘tomorrow and tomorrow and tomorrow’. Then
by Algorithm A and the function bwt in Python (see Appendix), we
obtain the output:

This result makes L more compressible, where L can be shrunk
(reversibly) using methods such as run-length encoding (RLE),
where runs of repeated characters are replaced with a shorter code.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Effectiveness of the String Compression II

However in general, the computation of the sorting of the
conjugates of a word is rather slow!

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

An Efficient Implementation - BWT via the Suffix Array I

A more efficient way to implement algorithm A is to reduce the
problem of sorting the rotations of the input string to that of
sorting the suffixes of a similar string. We will use T ′ = ‘banana$’
as the input string with an EOF character to illustrate the
implementation of BWT via the suffix array.

Let M be the matrix as defined in Algorithm A, whose rows
consists of the rotations of T ′ sorted in a lexicographical order.
Denote SAT ′ as the suffix array of T ′.Then, we have

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

An Efficient Implementation - BWT via the Suffix Array II

M =



$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a


, SAT ′ =



6
5
3
1
0
4
2


,

Suffixes given by SAT ′ =



$
a$
ana$
anana$
banana$
na$
nana$



Khoong Wei Hao Burrows Wheeler Transformation and its Applications

An Efficient Implementation - BWT via the Suffix Array III

Definition 2.3.1

Let L[i] denote the character at 0-based offset i for indexing in L,
and let SAT [i] denote the suffix at 0-based offset i for indexing in
L. Then for an input string T with the unique EOF character $,

L[i] =

{
T [SAT [i]− 1] if SAT [i]>0
$ if SAT [i] = 0.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

An Efficient Implementation - BWT via the Suffix Array IV

Example 2.3.2.

Let T = mississippi$ be a string, where a $ symbol is used to
denote the end-of-string. Let L be the array that contains the final
BWT output, given in the last column of the table below.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

An Efficient Implementation - BWT via the Suffix Array V

Now, for T ′ = ‘banana$’, we rewrite T ′ with T-ranking to get
T ′ = b0a0n0a1n1a2$. Note that $ is not ranked as it is unique.
Then by Algorithm A, we get

M =



$ b0 a0 n0 a1 n1 a2
a2 $ b0 a0 n0 a1 n1
a1 n1 a2 $ b0 a0 n0
a0 n0 a1 n1 a2 $ b0
b0 a0 n0 a1 n1 a2 $
n1 a2 $ b0 a0 n0 a1
n0 a1 n1 a2 $ b0 a0


, F =



$
a2
a1
a0
b0
n1
n0


and L =



a2
n1
n0
b0
$
a1
a0


.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

An Efficient Implementation - BWT via the Suffix Array VI

Next, by Algorithm B (Reverse Transform), similar to the example
shown in the previous section, we have

Figure: Reverse BWT starting at the right-hand side of T and moving
left-wards

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

FM Index I

The FM Index (Full-text index in Minute space) of T is a
space-efficient (compressed) full-text substring index of T , that is
based on the Burrows-Wheeler transform (BWT), and bears
similarity to the suffix array data structure.

In other words, the FM Index compresses the data and indexes it
concurrently!

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

FM Index II

Definition 2.4.1. (B-Ranking)

Rank the characters in L according to the number of times the
same character occurred previously in L.

By Algorithm A and definition 2.4.1, we update M to get

F =



$
a0
a1
a2
b0
n0
n1


, L =



a0
n0
n1
b0
$
a1
a2


, and Rank matrix =



0
0
1
0
0
1
2


.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching I

Let P be a prefix of T . Suppose that we are searching for a string
P = ban in M (we continue with our results in the previous slide).
We begin by searching for the rows of M that begins with the
shortest proper suffix of P, given by n. In other words, these are
rows that lie in the highlighted region:

F L Rank
$ b a n a n a 0
a $ b a n a n 0
a n a $ b a n 1
a n a n a $ b 0
b a n a n a $ 0
n a $ b a n a 1
n a n a $ b a 2



Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching II

Next, we search for the rows that begins with the next-longest
proper suffix of P, given by an (This can be done by the LF
Mapping): 

F L Rank
$ b a n a n a 0
a $ b a n a n 0
a n a $ b a n 1
a n a n a $ b 0
b a n a n a $ 0
n a $ b a n a 1
n a n a $ b a 2



Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching III

Finally, we search for the final suffix of P, which is ban. Similarly,
we look at the characters that lie in the highlighted region in L,
and observe that the occurrences of an are preceded by n1 and b0.
However, since we want ban and not nan, this leads us to the final
highlighted region:

F L Rank
$ b a n a n a 0
a $ b a n a n 0
a n a $ b a n 1
a n a n a $ b 0
b a n a n a $ 0
n a $ b a n a 1
n a n a $ b a 2



Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching IV

Hence, for backwards matching, we apply LF Mapping over and
over again to find the range of rows which are prefixed by
increasingly longer proper suffixes of P, till the size of the range is
equal to the number of times P occurs in T , or till the range
becomes ∅, which corresponds to the case where we run out of
suffixes or when P does not occur in T .

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching V

But.. searching for preceding characters in L is slow! In fact, it
takes O(n) time, where n = |T |. However, this can be made into
O(1) time by using a n × |

∑
| RanksChars matrix.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching VI

At each row of RankChars, each entry is an integer that
corresponds to the number of times the character has been
observed up to and including the particular position in L.
Continuing from the example with T = ‘banana$’, we have:

F L
$ a
a n
a n
a b
b $
n a
n a


, RanksChars =



$ a b n
0 1 0 0
0 1 0 1
0 1 0 2
0 1 1 2
1 1 1 2
1 2 1 2
1 3 1 2


.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching VII

Thus, by finding out the appropriate character c in RanksChars at
the extreme ends of the range, we will be able to implement a
method similar to backwards matching in O(1) time.

In this case, should the character c occur more than once, the
findings will return the ranks of the occurrences. Moreover, the
character c does not occur when there is no difference between the
two findings.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching VIII

Now, we remove almost all the rows in the RanksChars matrix,
and denote the rows kept behind as rank offset. So, every time we
scan through RankChars[c][i], we either find a row i that was not
removed or a row i that was removed.

For the first case, we continue the scan till we find a row i that
was removed, and for the second case, we scan the characters in L
from i , and move our search forwards or backwards till we arrive at
the next rank offset.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching IX

Recall that in computer science, an offset within the suffix array
SAT is an integer that indicates the distance between the
beginning of the array and a given element i , within SAT . Thus,
to find out where P occurs in T (P’s offset in T), we can simply
look up SAT .

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching X

Using our previous example where we were searching for a string
P = ban, we arrive at:

F L SAT

$ b a n a n a 6
a $ b a n a n 5
a n a $ b a n 3
a n a n a $ b 1
b a n a n a $ 0
n a $ b a n a 4
n a n a $ b a 2


.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching XI

From SAT , the match occurs at offset 0. However, to use less
space than storing n integers in SAT , we remove majority of the
elements in SAT , and generate them when required. Suppose that
we store every 4th entry of SAT instead of every entry. When we
look up SAT [1], we find that it has been removed (‘-’ in
highlighted region below):

F L SAT

$ b a n a n a 6
a $ b a n a n −
a n a $ b a n −
a n a n a $ b −
b a n a n a $ 0
n a $ b a n a −
n a n a $ b a −


.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching XII

Then by the LF Mapping, we arrive at the next row:

F L SAT

$ b a n a n a 6
a $ b a n a n −
a n a $ b a n −
a n a n a $ b −
b a n a n a $ 0
n a $ b a n a −
n a n a $ b a −


.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching XIII

However, we end up in a row that has been removed. So repeating
the process, we eventually reach a retained row after 5 steps by the
LF Mapping: 

F L SAT

$ b a n a n a 6
a $ b a n a n −
a n a $ b a n −
a n a n a $ b −
b a n a n a $ 0
n a $ b a n a −
n a n a $ b a −


.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching XIV

Since at this row we have SAT = 0 and 5 steps were taken to
arrive at this row, the row we started the process has an offset
|5− 0| = 5.

Hence, searching for the offset of T corresponding to a row of M is
O(1), when retaining an element of SAT at every kth index of T .

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching XV

In summary, the FM Index is a combination of L and an auxiliary
data structure. This gives us the following definition for the FM
Index[22]:

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching XVI

Definition 2.4.2.

Let T [0..n− 1] be a string of length |T | = n, and SAT [0..n− 1] be
its suffix array. The FM Index of T stores the following data
structures:

1 The output string of BWT is defined as a string of characters
L[0..n − 1], where

L[i] =

{
T [SAT [i]− 1] if SAT [i] 6= 0
T [n − 1] if SAT [i] = 0.

(1)

So, L is an array of preceding characters of the sorted suffixes.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Backwards Matching XVII

Definition 2.4.2. (Con’t.)

2 For every c ∈
∑

, C [c] is an array that stores the the total
number of occurrences of characters that are lexicographically
smaller than c . For example, for T = banana$, we have
C [a] = 1,C [b] = 4,C [n] = 5,C [z] = 7.

3 A data structure that supports O(1) time computation of
occ(c , i), where occ(c, i) is the number of occurrences of c in
L[0..i − 1], for c ∈

∑
.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Implementation of the Transform I

Outline of Tests

1 Apply BWT to space delimited data sets which comprises of
binary text, and letter-based texts

2 For the letter-based texts, begin with tests on strings made up
of characters from

∑
, such that |

∑
| = 2 (For binary texts,∑

= {0, 1})
3 After transforming the data with the BWT, use the .ZIP

archive file format to compress the data files

4 Proceed with tests on other texts made up of characters from∑
, where |

∑
| = n for increasing n

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Implementation of the Transform II

Remark

During all our tests, we first record 100 observations for each data
file of a particular size in bytes, using a pseudo-random text
generator to generate 100 random strings with the same file size
(number of characters) in bytes. We will then proceed to apply the
BWT to each randomly-generated string, and finally apply .ZIP to
both non-BWT and BWT texts (strings).

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Implementation of the Transform III

Definition

The formula for the Compression Ratio is given by

Compression Ratio =
Uncompressed Data Size

Compressed Data Size
(2)

In general, a compression ratio <1 indicates that the size of the
compressed file is greater than that of the original file, so
compression will be in-favourable in this case.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Compression for Binary Data I

Figure: Test Results on binary (
∑

= {0, 1}) strings

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Compression for Binary Data II

Figure: Zoomed-in portion of test Results on binary (
∑

= {0, 1}) strings

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Compression for Letter-Based Texts I

We begin our tests with
∑

= {a, b} for |
∑
| = 2, followed by∑

= {a, b, c , d}, up till
∑

= {a, b, . . . , z} for |
∑
| = 26, with an

increment of 2 characters for each test.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Compression for Letter-Based Texts II

From our results, we observe that as the number of types of
characters increases in a string, the lower the peak compression
ratio ri (i ∈ {x |x = |

∑
|}) becomes, for each data file of a

particular size.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Compression for Letter-Based Texts III

Figure: Zoomed-in portion of the histogram showing that BWT text have
on average, lower compression ratios than non-BWT text for 2-character
and 26-character strings

For example, the peak compression ratio r2 for the test where∑
= {a, b} is about 5.88, whereas the peak compression ratio r26

for the test where
∑

= {a, b, . . . , z} is about 1.57.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Compression for Letter-Based Texts IV

More Findings

1 As |
∑
| increases, the compression ratio reaches its peak at

lower file sizes

2 Both compression ratios for Binary (
∑

= {0, 1}) and
2-Character (

∑
= {a, b})texts have peak ri at about 35000B

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Compression for Letter-Based Texts V

Figure: Zoomed-in portion of the histogram showing that BWT text have
on average, lower compression ratios than non-BWT text for 2-character
and Binary strings

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Compression for Letter-Based Texts VI

However, the differences were marginal!

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Compression for Letter-Based Texts VII

Figure: Zoomed-in portion of the histogram showing that BWT text have
on average, lower peak compression ratios than non-BWT text for
2-character and 26-character strings

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Compression for Letter-Based Texts VIII

Summary of Findings

1 Difference in compression ratios are only significant for smaller
file sizes, such as 1000B

2 Spread of compression ratios decreases as file size increases

3 Difference in mean compression ratios between non-BWT and
BWT texts decreases as file size increases

4 The more random the data, the lower the effectiveness of
BWT

The results of our testing can be found on the GitHub repository
at: https://github.com/weihao94/

Burrows-Wheeler-Transformation-and-its-Applications.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

https://github.com/weihao94/Burrows-Wheeler-Transformation-and-its-Applications
https://github.com/weihao94/Burrows-Wheeler-Transformation-and-its-Applications

De Bruijn Sequences in the BWT - Preliminaries I

Definition 4.1.1.

A graph G is an ordered pair (V ,E), where V is the set that
comprises of vertices of G , and E is a set of ordered or unordered
pairs of vertices u, v in G . G is said to be a directed graph if E is
a set of ordered pairs of vertices (u, v), for some u, v ∈ V . G is
said to be undirected if E is a set of unordered pairs of vertices
{u, v}, for some u, v ∈ V .

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the BWT - Preliminaries II

Definition 4.1.2.

A multigraph G consists of a non-empty finite set V (G) of
vertices and a finite set E (G) (possibly empty) of edges such that
each edge joins two distinct vertices in V (G), and any two distinct
vertices in V (G) are joined by a finite number (including zero) of
edges.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the BWT - Preliminaries III

Definition 4.1.3.

1 A x − y walk is an alternating sequence
W : x = v0e1v1e2 . . . vk−1ekvk = y where vi ∈ V (G) for
i = 0, 1, . . . , k , and ei ∈ E (G) for i = 1, 2, . . . , k is an edge
incident with vi−1 and vi . The x − y walk also has an initial
vertex x = v0 and terminal vertex y = vk .

2 A x − y trail is a x − y walk where the edges in W are all
distinct. In other words, every x − y trail is a x − y walk in G
but a x − y walk is a x − y trail ⇐⇒ none of the edges in
the walk are repeated.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the BWT - Preliminaries IV

Definition 4.1.3. (Con’t.)

3 A x − y path is a x − y walk in which the vertices in W are all
distinct. Thus, every x − y path is a x − y trail, but a x − y
trail is a x − y path ⇐⇒ none of the vertices are repeated.

4 A x − y walk is said to be open if x 6= y and closed if x = y .

5 The length of the walk, trail or path is the umber of edges in
W .

6 A closed trail of length at least two is called a cycle if
v0, . . . , vk−1 are all distinct.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the BWT - Preliminaries V

Definition 4.1.4.

Let G be a connected multigraph. A trail in G is said to be an
Eulerian trail of G if it contains all the edges of G . G is said to
be Eulerian (resp. semi-Eulerian) if ∃ a closed (resp. open)
Eulerian trail in G .

Theorem 4.1.5.

Let G be a connected multigraph. Then the following statements
are equivalent:

1 G is Eulerian.

2 Every vertex of G is even.

3 The set E (G) can be partitioned into cycles.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the BWT - Preliminaries VI

Corollary 4.1.6.

A connected multigraph G is semi-Eulerian ⇐⇒ G contains
exactly two odd vertices. Furthermore, any open Eulerian trail in G
must start at one of the odd vertices and terminate at the other
odd vertex.

Definition 4.1.8.

A connected graph G of order n ≥ 3 is Hamiltonian if it contains
a spanning cycle. If G is a Hamiltonian graph, then any spanning
cycle of G is called a Hamiltonian cycle of G .

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the BWT - Preliminaries VII

Fleury’s algorithm [10]:

Let G be an Eulerian multigraph. Proceed with the following
steps:

1 Select an arbitrary vertex v0 in G and set
W0 := v0, i := 0,Gi := G ,Ei := ∅.

2 Suppose that a trail Wi = v0e1v1 . . . eivi has been
constructed. Choose an edge ei+1 from E (G)− Ei such that
ei+1 = vivi+1 for some vertex vi+1 and unless there is no
other alternative, ei+1 is not a bridge of Gi .

3 Update Wi+1 := Wiei+1vi+1,Ei+1 := Ei ∪ {ei+1}. Remove
the edge ei+1 from Gi , along with any isolated vertices in Gi .
If the resulting graph has no more edges, the algorithm ends.
Otherwise, let the resulting graph be Gi+1, increase i by 1,
and return to step 2.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the BWT - Preliminaries VIII

So, Fleury’s algorithm generates an Euler circuit that starts and
ends at the same vertex!

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Graphs I

Definition 4.2.1.

A k-bit string b is said to be obtained from a k-bit string
a = a1a2 . . . ak by a left-shift operation if bi = ai+1, for
i = 1, 2, . . . , k − 1, where bk may be arbitrary. Then

1 A left shift a1a2 . . . ak → b1b2 . . . bk is a cyclic shift if bk = a1.

2 A left shift a1a2 . . . ak → b1b2 . . . bk is a de Bruijn shift if
bk 6= a1.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Graphs II

Definition 4.2.2.

A de Bruijn graph of order k , denoted by G (k), is a directed
graph with 2k vertices, each labelled with a unique k-bit string.
Vertex vi is joined to vertex vj by an arc if bit string vj is
obtainable from bit string vi by either a cyclic shift (rotation), or a
de Bruijn shift.

Furthermore, each arc of G (k) is a cyclic shift arc or a de Bruijn
arc, according to the shift operation it represents. Each arc is
labelled by the first bit of the vertex where it originates from,
followed by the label of the vertex where it terminates.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Graphs III

Remark 4.2.3.

The above definition leads us to some properties of the de Bruijn
graph:

1 Every de Bruijn graph is Eulerian and Hamiltonian.

2 Every de Bruijn graph is strongly connected.

3 Every vertex has in-degree 2 and out-degree 2. The first bit in
the label on one of the vertices to which it points to is 0, and
the first bit in the label on the other vertex is 1.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT I

Definition 4.3.1.

A de Bruijn sequence B(k , n) of order n on an alphabet
∑

of
size k is a binary string of length kn, where the last bit is said to
be adjacent to the first bit, and every possible binary n-tuple
occurs exactly once.

Two de Bruijn sequences are said to be identical if one can be
obtained from the other by a cyclic permutation. In particular,
every de Bruijn sequence corresponds to an Eulerian cycle on a de
Bruijn graph.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT II

Theorem 4.3.2. (de Bruijn’s Theorem [16]).

For each positive integer n, there are 22
n−1−n de Bruijn sequences

of order n.

Example 4.3.3.

By Theorem 4.3.2, there are 2 distinct de Bruijn sequences B(2, 3),
given by 00010111 and 11101000.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT III

To construct a de Bruijn sequence of order n, we use Fleury’s
algorithm to construct an Eulerian cycle of the de Bruijn graph
with dimension n − 1. Then, record the sequence of arc labels on
the Eulerian cycle.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT IV

Example 4.3.4.

Suppose we want to construct a B(2, 4) de Bruijn sequence of
order 4 with length 16(= 24) from the de Bruijn graph of
dimension 3. By Fleury’s algorithm, we have a de Bruijn graph of
dimension 3:

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT V

Example 4.3.4. (Con’t).

Figure: A de Bruijn graph of dimension 3 [1]

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT VI

Example 4.3.4. (Con’t).

Suppose we follow an Eulerian path through the nodes 000, 000,
001, 011, 111, 111, 110, 101, 011, 110, 100, 001, 010, 101, 010,
100, 000. From the output sequences, we get the de Bruijn
sequence 0000111101100101 of length 16.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT VII

Figure: How the vertices of G s.t. dim(G) = 3 appear in the de Bruijn
sequence

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT - Lyndon Words I

Definition 4.3.5.

A k-ary necklace of length n is an equivalence class under
rotations of strings of length n over an alphabet

∑
, where

|
∑
| = k . By BurnsidePolya enumeration, the number of k-ary

necklaces of length n is

Nk(n) =
1

n

∑
d |n

φ(d)k
n
d (3)

where φ(n) is the number of integers in the interval [1, n] that are
relatively prime to n [1].

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT - Lyndon Words
II

Definition 4.3.6. [1,15].

A k-ary Lyndon word of length n>0 is a string of length n over an
alphabet

∑
, where |

∑
| = k, and is the lexicographically smallest

element in all its possible rotations. In other words, a Lyndon word
corresponds to an aperiodic necklace representative.

Example

Let
∑

= {0, 1}. Suppose we have a word 110010 over the
alphabet

∑
. The rotations of 110010 are: 110010, 100101,

001011, 010110, 101100, 011001. By listing these words in a
lexicographical order, we obtain the Lyndon word 001011, which is
the first element (and also the lexicographically smallest element)
of the list: 001011, 010110, 011001 100101, 101100, 110010.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT - Lyndon Words
III

Theorem 4.3.8. (Chen-Fox-Lyndon Theorem [11])

For every word w over an ordered alphabet
∑

that is non-empty, ∃
a unique factorization w = vt . . . v1 such that v1 ≤ · · · ≤ vt is a
non-decreasing sequence of Lyndon words.

Definition 4.3.9.

A permutation of a set Sn is a function π : Sn = {1, . . . , n} → Sn
that is bijective.

Definition 4.3.10.

A permutation is a cyclic permutation ⇐⇒ it contains a single
non-trivial cycle.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT - Lyndon Words
IV

Algorithm C - De Bruijn Sequence by the Inverse BWT [7].

Suppose we have a string L made up of a size-k alphabet
∑

that
is repeated kn−1 times, such that applying the Inverse BWT on L
gives a string T that is of the same length of the de Bruijn
sequence B(k , n), and the result is a set of all Lyndon words of
length d , where d |n, k ≥ 2. To get a de Bruijn sequence B(k , n),
we proceed in the following manner:

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT - Lyndon Words
V

Algorithm C - De Bruijn Sequence by the Inverse BWT [7] (Con’t).

1 Sort the characters in L, denote the output string as L′.

2 Place L′ above L, and while preserving the order of the
characters, map each character in L′ to its corresponding
position in L.

3 Write out the above permutation in a cycle notation, with the
smallest position in each cycle first, and sort the cycles in
ascending order.

4 In each cycle, replace every number with their corresponding
letters in L′, at that particular position.

5 Now, each cycle represents a Lyndon word sorted in a
lexicographical order. Finally, we remove the parentheses to
get the first de Bruijn sequence of B(k , n).

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT - Lyndon Words
VI

Note that for every n and for every size-k alphabet
∑

, there are
(k!)k

n−1

kn many distinct de Bruijn sequences B(k , n).

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT - Lyndon Words
VII

Example 4.3.11.

Suppose for n = 4, k = 2, we want to create the first de Bruijn
sequence B(2, 4) of length 24. By Algorithm C, we first
concatenate the alphabet ab repeatedly for 8 times to get
L = abababababababab (of length 24). Then sort the characters in
L, to get L′ = aaaaaaaabbbbbbbb. Next, we place L′ above L,
numbering each column for the cycle notation, and map each
character in L′ to its corresponding position in L.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT - Lyndon Words
VIII

Example 4.3.11. (Con’t).

Figure: Illustration of the cycles of permutation by Algorithm C

Starting from the smallest number 1, the cycles are:
(1)(2 3 5 9)(4 7 13 10)(6 11)(8 15 14 12)(16).

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

De Bruijn Sequences in the Inverse BWT - Lyndon Words
IX

Example 4.3.11. (Con’t).

Next, replace each number in each cycle with the corresponding
character in L′ in each corresponding column to get
(a)(aaab)(aabb)(ab)(abbb)(b). Note that these are Lyndon words
of length d in lexicographical order, such that d |4 (for n = 4).

Finally, remove the parentheses to get
B(2, 4) = aaaabaabbababbbb, the first de Bruijn sequence of
length 24 = 16.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Bijective Variant of the BWT I

Overview: The bijective transform maps a string (or word) of
length n to a string (or word) of length n without the need for any
EOF -character or index.

Effectiveness: The bijective transform allows savings of several
bits, and also strengthens data security during cryptographic
operations.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Bijective Variant of the BWT II

Why is it used in place of the original BWT?

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Bijective Variant of the BWT III

1 The EOF -character tends to speed up algorithms or simplify
proofs, but it brings about new redundancies

2 O(log n) bits are needed to code the unique EOF character

3 It outperforms the BWT on nearly all the data files of the
Calgary Corpus (a collection of text and binary data files - a
benchmark for data compression in the 1990s) by at least a
few hundred bytes

4 higher advantage than just preserving the rotational index

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Bijective Variant of the BWT IV

Definition 5.1.1. (Lyndon Factorization).

A word w can be factorized into factors such that each factor wi is
a Lyndon word (Recall from definition 4.3.6. that a k-ary Lyndon
word of length n>0 is a string of length n over

∑
s.t. |

∑
| = k ,

and is the lexicographically smallest element in all its possible
rotations).

Example 5.1.2.

Let w=abacabab. Then the Lyndon factorization of w gives us the
factors abac, ab, ab.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Bijective Variant of the BWT V

Algorithm D - Bijective Transform.

Suppose we have an input string w of length n with Lyndon
factorization w = vt . . . v1.

1 List out all possible rotations of each Lyndon word vi .

2 Sort the list of rotated Lyndon words alphabetically by the
first character.

3 Concatenate the last character of each rotated Lyndon Word
to get the transformed word L.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Bijective Variant of the BWT VI

Example 5.1.3.

Suppose we have a string w = banana. The Lyndon factorization
is w = v4 . . . v1, where v4 = b, v3 = an, v2 = an, and v1 = a. In
particular, banana becomes (b)(an)(an)(a), but the Lyndon words
are combined into (b)(anan)(a):

Index All Possible Rotations
1 b
2 anan
3 nana
4 anan
5 nana
6 a

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Bijective Variant of the BWT VII

Example 5.1.3. (Con’t).

Next, we sort the list of rotated Lyndon words alphabetically by
their first character to get:

Index All Possible Rotations
6 a
2 anan
4 anan
1 b
4 nana
5 nana

Hence, by concatenating the last character of each Lyndon word in
the sorted list, we get L = annbaa, the output of the bijective
transform.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Bijective Variant of the BWT VIII

Algorithm E - Inverse Bijective Transform.

Using L from Algorithm D, we proceed in the following steps (This
is in fact largely similar to Algorithm C):

1 First sort the characters in L, and denote the resulting string
as L′.

2 Place L′ above L, and while preserving the order (index) of
the characters, map each character in L′ to its corresponding
position in L.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Bijective Variant of the BWT IX

Algorithm E - Inverse Bijective Transform. (Con’t).

3 Write out the above permutation in a cycle notation, with the
smallest position in each cycle first, and sort the cycles in
ascending order. Alternatively, in place of Steps 1 and 2, one
may derive the standard permutation πL induced by L.

4 In each cycle, replace every number (index) with their
corresponding letters in L′, at that particular position (This
yields a Lyndon factor vi of L in each cycle).

5 Finally, by concatenating the cycles in a reverse-order (starting
with cycles with the largest indexes), we obtain the original
input string w .

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Bijective Variant of the BWT X

Example 5.1.4.

In this example, we will use the string w = banana from Example
5.1.3, and its output string L = annbaa from the bijective
transform to illustrate Algorithm E.

By Step 1 of Algorithm E, we have L’ = aaabnn.

At Step 2, we obtain the following:

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Bijective Variant of the BWT XI

Example 5.1.4. (Con’t).

Next, in Step 3, we obtain the cycles
C1 = (1),C2 = (2, 5),C3 = (3, 6),C4 = (4).

Alternatively, one can derive the standard permutation πL induced
by L, given by

πL =

(
1 2 3 4 5 6
1 5 6 4 2 3

)
and then obtain the cycles C1, . . . ,C4 in a similar manner.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Bijective Variant of the BWT XII

Example 5.1.4. (Con’t).

Next, in Step 4, we replace every number in each cycle with their
corresponding letters in L′, at that particular position to
getC1 = (a),C2 = (an),C3 = (an),C4 = (b).

Finally, we concatenate the cycles in a reverse-order, starting with
cycles with the largest index, and obtain the initial input string w
= banana.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Conclusion I

Conclusion & Summary1

1The slides can be found in my GitHub repository, together with the results
of my tests at: https://github.com/weihao94/
Burrows-Wheeler-Transformation-and-its-Applications

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

https://github.com/weihao94/Burrows-Wheeler-Transformation-and-its-Applications
https://github.com/weihao94/Burrows-Wheeler-Transformation-and-its-Applications

Selected References I

[6] Burrows, M., Wheeler, D.J.A block sorting lossless data
compression algorithm. Digital Equipment Corporation, Tech. Rep.
124, 1994.

[7] Higgins, P.M. Burrows-Wheeler transformations and de Bruijn
words. Theoretical Computer Science, Vol. 457, pp. 128-136,
2012.

[8] J. Gil, D. A. Scott. A Bijective String Sorting Transform.
CoRR, abs/1201.3077, 2009.

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

Selected References II

Thank you for your kind attention! :)

Khoong Wei Hao Burrows Wheeler Transformation and its Applications

	Introduction
	History
	Data Compression
	Suffix, Suffix Array, and Suffix Trees

	The Burrows Wheeler Transform
	The Reversible Transformation
	Effectiveness of the String Compression
	An Efficient Implementation
	FM Index

	Applications of the Burrows Wheeler Transform
	Implementation of the Transform
	Performance of the Implementation

	De Bruijn Sequences in the BWT
	Preliminaries
	De Bruijn Graphs
	De Bruijn Sequences in the Inverse BWT

	Variants of the Burrows Wheeler Transform
	Bijective Variant of the BWT

	Conclusion
	Selected References

